Debugging with DDD

User's Guide and Reference Manual
First Edition, for DDD Version 3.3.9
Last updated 15 January, 2004

DataDisplayDebugger

Andreas Zeller

Debugging with DDD
User's Guide and Reference Manual

Copyright(©) 2004 Universitat des Saarlandes
Lehrstuhl Softwaretechnik

Postfach 15 11 50

66041 Saarbriicken

GERMANY

Distributed by

Free Software Foundation, Inc.
59 Temple Place — Suite 330
Boston, MA 02111-1307

USA

DDD and this manual are available via
theDDD www page

Permission is granted to copy, distribute and/or modify this document under the terms of the GNU
Free Documentation License, Version 1.1 or any later version published by the Free Software Foun-
dation; with no Invariant Sections, no Front-Cover Texts and no Back-Cover Texts. A copy of the
license is included in the section entitled “GNU Free Documentation License”ASpendix |
[Documentation License], page 196r details.

Send questions, comments, suggestions, ettdd@gnu.org .
Send bug reports toug-ddd@gnu.org

http://www.gnu.org/software/ddd/
mailto:ddd@gnu.org
mailto:bug-ddd@gnu.org

Short Contents

SUMMary of DDD. v v v v v v i it ittt s s st s s 1.
1 ASampleDDD SeSSION. « v v v vt v vt vt s a s e 5.
2 Gettinglnand OutofDDD . .+ v v ot i i e e e e e 15
3 TheDDDWINAOWS & v v vttt sttt i e s e it i a i a i a i a s a e aannns 41
4 Navigating throughtheCode oo oottt e e e e e 73
5 StoppingtheProgram.o v v v i it i i i ittt s i s 81
6 Runningthe Program. v i ittt et s e s e 91
7 ExaminingData. . . v v v v v v i e s e s e i 105
8 Machine-Level Debugging . « v« v v v v vt vt e e e i e 141
9 Changingthe Program.« i it ittt it s e e nne e 145
10 The Command-Lineinterface. oo v i vt i i i i 147
Appendix A ApplicationDefaults o o v i i i e e e 159
Appendix B Bugsand How ToReportThem . . . v v v v i v it v e e v v us 169
Appendix C Configuration NOtes. . .« v v o v v i it it e e s e n e e e s 175
AppendiXxD Dirty THCKS. + v v v v v v v e ettt s st s s n e e a s 181
AppendixE Extending DDD . . .o v v it i i e e e e 183
Appendix F Frequently Answered Questions. oo v v i it v i n s 185
Appendix G GNU General PublicLicense oo v v it i i i v i i ae e ns 187
AppendixH Helpand AssiStance. . . . v v v v vt ittt e 195
Appendix | GNU Free Documentation LiceENSe . . . v v v v v v v v e v v v a e s 197
Label INdeX. « v v v i ot et e e e e s e e e e 203
Key INAeX. v v v v et ittt e s i i i ittt s s st s 207
Command INdeX . « v v v vt et sttt et e e e e 209
Resource INdeX . . v v ottt et e e e e e 211
FileIndeX. v v it e e e i e e e 215

CoNCEPLINAEX & v v v it e e e e e e 217

Debugging with DDD

Table of Contents

Summary of DDDot e e 1.
AboutthisManual.......... 2.
TypographiC CONVENtiONSot e s 2.
Free software.o 3.
GettiNng DDD. . .. oottt 3.
Contributors tO DDD o e 3.
HIiStory of DDDo 4.

1 ASample DDD SeSSION cv v ittt 5
1.1 Sample Programc.oviiiiiiiiii i 14

2 Gettinglnand Outof DDDco it 15
2.1 InVOKING DDD. ... 15

2.1.1 Choosing an Inferior Debugger................... 15

2.1.2 DDDOPtONS e 16

2.1.3 XOPUONS. .o e 24

2.1.4 Inferior Debugger Options..............cvevnn. 24
2.141 GDBOPLONS.oviiiiiiiiiieaann. 24

2.1.4.2 DBXand Ladebug Options............... 25

2.1.4.3 XDBOPtONS......covviiiii i 25

2144 JDBOptions..........coiiiiiiiii 25

2.1.45 PYDBOpPtioONS.........covviiiiiiiinn.n. 27

2.1.46 PerlOptions..........ccoviiiiiiiiinn.. 27

2.1.47 BashOptions...........ccovivviiininnn. 27

2.1.5 MultipleDDD Instances..............ccvviiveennn.. 28

2.1.6 XWaAMINGS. ..ottt it 28

2.2 QUItING DDD.o 28
2.3 Persistent SESSIONSt 29
2.3.1 Saving SESSIONS.ottt 29

2.3.2 Resuming SesSIONSvviiiieniiineininanns 30

2.3.3 Deleting Sessions.c.coviviiiiii i 31

2.3.4 Customizing SesSioNScovviiiii i 32

2.4 Remote Debugging....... ..o 32
2.4.1 Running DDD onaRemote Host................. 32

2.4.2 Using DDD with a Remote Inferior Debugger...... 32
2.4.2.1 Customizing Remote Debugging........ 33

2.4.3 Debugging a Remote Program.................... 34

2.5 Customizing Interaction with the Inferior Debugger.......... 34
2.5.1 Invoking an Inferior Debugger..................... 34

2.5.2 Initializing the Inferior Debugger.................. 35
2.5.2.1 GDB Initialization....................... 35

2.5.2.2 DBX Initialization 36

iv Debugging with DDD

2.5.2.3 XDB Initialization 36

2.5.2.4 JDBInitialization........................ 36

2.5.2.5 PYDB Initialization...................... 37

2.5.2.6 PerlInitialization........................ 37

2.5.2.7 Bash Initialization....................... 37

2.5.2.8 FindingaPlacetoStart.................. 37

2.5.2.9 Openingthe Selection.................. 38

2.5.3 Communication with the Inferior Debugger........ 38

3 The DDDWINAOWS. . .o v ittt i it e e e iiieee e e 41
3.1 TheMenuBar....... ... 41
3.1.1 TheFileMenu.... ... 42

3.1.2 TheEditMenu..........coiiiii i 43

3.1.3 TheViewMenu...........cooiiiiiiiiiiiina.d 44

3.1.4 TheProgramMenu..............ccooviiiiinnennn. 45

3.1.5 TheCommandsMenu..................ccovue.... 46

3.1.6 TheStatusMenu..........cooiiiiiiiiiiiiann.n. a7

3.1.7 TheSourceMenu............cooviiiiiiinennnnn.. a7

3.1.8 TheDataMenu...........cccoiiiiiiiiiineanns. 48

3.1.9 The MaintenanceMenu......................c..... 49

3.1.10 TheHelpMenu..............ccooiiiiiiiinn... 50

3.1.11 Customizingthe MenuBar...................... 50
3.1.11.1 Auto-RaiseMenus..................... 51

3.1.11.2 Customizing the EditMenu............. 51

3.2 TheToolBar. ... e h2
3.2.1 Customizingthe ToolBar......................... 54

3.3 TheCommand TOOL........ooiriiii e 55
3.3.1 Customizing the Command Taol................... 57
3.3.1.1 Disabling the Command Tool 57

3.3.2 Command Tool Positian.......................... 58
3.3.2.1 Customizing Tool Decoration 59

34 GettingHelp. ... 59
3.5 Undoing and Redoing Commands.oo.... 60
3.6 CustomizingDDDot 60
3.6.1 How CustomizingDDDWorks.................... 60
3.6.1.1 RESOUICES......oiitiiiiiiiianieaanns 60

3.6.1.2 ChangingResources...................! 61

3.6.1.3 SavingOptionsccovvvvinnnn.. 61

3.6.2 CustomizingDDD Help..................oooas. 61
3.6.2.1 ButtonTipS.....ovviiiiiiiii i 61

3.6.2.2 Tipoftheday............................ 62

3.6.2.3 HelpHelpers...........ccoiiiiiiia. 63

3.6.3 CustomizingUnda............cooiiiiiiiiiiii.. 64

3.6.4 Customizing the DDD Windows................... 64
3.6.4.1 SplashScreen.......................... 64

3.6.4.2 WindowlLayout......................... 65

3.6.4.3 Customizing Fonts...................... 67

3.6.4.4 TogglingWindows....................... 70

3.6.45 TextFields...........cooviiiiinn... 70

3646 Icons..........coiiiiiiiiiiiiiiiee 0

3.6.4.7 AddingButtons................ 71

3.6.4.8 More Customizations.................... 71

3.6.5 DebuggerSettings...........cooiiiiiii i 71

4 Navigating throughtheCode. 73
4.1 CompilingforDebugging ... 73
4.2 Opening Files.o 73
4.2.1 Opening Programs.ccoveiiiiieeniinnnanns 7.3

4.2.2 OpeningCore DUMPS.ccovviiiiineiiiinenn 74

4.2.3 Opening SourceFiles......................oo. .. 74

424 FilteringFiles. ... 75

4.3 LookingQupltems.o 75
4.3.1 Looking up Definitions............................ 75

432 TextualSearch.......... 76

4.3.3 Looking up Previous Locations................... 76

4.3.4 Specifying Source Directories 76

4.4 Customizing the Source Window.coovvuvnn... 7
4.4.1 CustomizingGlyphs.................. ool 78

4.4.2 Customizing Searching........................... 79

4.4.3 Customizing Source Appearance.................. 79

4.4.4 Customizing Source Scrolling..................... 80

4.45 Customizing Source LOOKUpP.covvvnunn. 80

4.4.6 Customizing File Filtering. 80

5 Stoppingthe Program.o 81
5.1 Breakpoints.ori i e 31
5.1.1 Setting Breakpoints.ccooviiiiiiinnnn...d 81
5.1.1.1 Setting Breakpoints by Location......... 81

5.1.1.2 Setting Breakpoints by Name............ 82

5.1.1.3 Setting Regexp Breakpoints............. 82

5.1.2 Deleting Breakpoints..................ccovviunn.. 82

5.1.3 Disabling Breakpoints..................covuns. 83

5.1.4 Temporary Breakpoints.cccoovvnn... 83

5.1.5 Editing Breakpoint Properties..................... 84

5.1.6 Breakpoint Conditions.................. ..., 84

5.1.7 BreakpointignoreCounts......................... 85

5.1.8 BreakpointCommands...............cccviviniinn.. 85

5.1.9 Moving and Copying Breakpoints.................. 86

5.1.10 Lookingup Breakpoints......................... 86

5.1.11 Editing all Breakpoints........................... 86

5.1.12 Hardware-Assisted Breakpoints................. 87

5.2 WatChpoints. 87
5.2.1 Setting Watchpoints...................ccovin.n. 88

5.2.2 Editing Watchpoint Properties..................... 88

5.2.3 Editing all Watchpoints............................ 88

5.2.4 Deleting Watchpoints............................. 88

Vi Debugging with DDD

5.3 INtermrupting .. oo oo e 38
5.4 Stopping X Programs. ..ot 89
5.4.1 Customizing Grab Checking...................... 89

6 RunningtheProgram...........c.ouiiiiiiniinnnnnennnn a1
6.1 Starting Program Execution..................ccoiiieiann.. a1l
6.1.1 Your Program's Arguments....................... 92

6.1.2 Your Program’s Environment...................... 92

6.1.3 Your Program’s Working Directoty................. 92

6.1.4 Your Program’s Inputand Output................. 92

6.2 Using the Execution Window.................cccviiinn., 23
6.2.1 Customizing the Execution Window................ 94

6.3 Attachingtoa RunningProcess...............covivin... 94
6.3.1 Customizing Attaching to Processes............... 95

6.4 Program StOPScoiiii i 96
6.5 Resuming Execution...............coiiiiiiiiiiiiiiineann, 96
6.5.1 ContinUING.....oorriiiii i 96

6.5.2 SteppingoneLine..........ccviiiiiiiiiiiiiiin. 96

6.5.3 Continuingtothe NextLine....................... 96

6.5.4 ContinuingUntilHere............................. 97

6.5.5 Continuing Until a Greater Line is Reached........ 97

6.5.6 Continuing Until Function Returns. 97

6.6 Continuing at a Different Address........................... 97
6.7 ExaminingtheStack i, a8
6.7.1 StackFrames............ ... i, 98

6.7.2 Backtraces.............c.oiiiiiii 99

6.7.3 SelectingaFrame....................... ... 100

6.8 “Undoing” Program Executian.................ccoovvuen.. 100
6.9 ExaminingThreads, 101
6.10 HandlingSignals..............ciiiiiiiiii i 102
6.11 Killingthe Program.............ccciiiiiiiiiii ... 104
7 ExaminingData...........c.iiiiiiiiii e 105
7.1 Showing Simple Values using Value Tips.................. 105
7.2 Printing Simple Values in the Debugger Console........... 106
7.3 Displaying Complex Values in the Data Window 107
7.3.1 DisplayBasics..........coiiiiiiii 107
7.3.1.1 Creating Single Displays................ 107

7.3.1.2 Selecting Displays..................... 108

7.3.1.3 Showing and Hiding Details............. 109

7.3.1.4 Rotating Displays...................... 110

7.3.1.5 Displaying Local Variables.............. 111

7.3.1.6 Displaying Program Status............. 112

7.3.1.7 Refreshing the Data Window............. 113

7.3.1.8 Display Placement..................... 113

7.3.1.9 Clustering Displays.................... 114

7.3.1.10 Creating Multiple Displays............ 115

7.3.1.11 Editing all Displays................... 115

7.3.1.12 DeletingDisplays...................... 116

7.3.2 AITAYS .o 117
7.3.21 ArraySIlices.........cooiiiiiiiiii 117

7.3.2.2 RepeatedValues....................... 118

7.3.2.3 ArraysasTables....................... 119

7.3.3 Assignmentto Variables......................... 119

7.3.4 Examining Structures. ..., 120
7.3.4.1 Displaying Dependent Values........... 120

7.3.4.2 Dereferencing Pointers................ 120

7.3.4.3 Shared Structures 121

7.3.4.4 Display Shortcuts...................... 122

7.3.5 Customizing Displaysc.coiiiiiiiiia... 125
7.3.5.1 UsingDataThemes.................... 125

7.3.5.2 Applying Data Themes to Several Values.26

7.3.5.3 EditingThemes........................ 127

7.3.5.4 Writing Data Themes................... 127

7.3.5.5 Display Resources..................... 128

7.3.5.6 VSLResources.............ccoviunn.. 128

7.3.6 LayoutingtheGraph............................. 129
7.3.6.1 Moving Displays....................... 129

7.3.6.2 ScrollingData.................cooiun.. 130

7.3.6.3 Aligning Displays...................... 130

7.3.6.4 AutomaticLayout...................... 130

7.3.6.5 Rotatingthe Graph..................... 131

7.3.7 PrintingtheGraph...................... 131

7.4 Plotting Values. 133
7.4.1 PlOtiNg Arrays.oove i 133

7.4.2 Changing the Plot Appearance................... 134

7.4.3 Plotting Scalars and Composites................. 134

7.4.4 Plotting Display Histories........................ 135

7.45 PrintingPlots. ... 135

7.4.6 Entering Plotting Commands.................... 136

7.4.7 ExportingPlotData.....................oooat. 136

7.4.8 AnimatingPlots..................ci i 136

7.4.9 CustomizingPlots............cooiiiiii i 137
7.4.9.1 GnuplotInvocation...................... 137

7.4.9.2 GnuplotSettings..............ccoovnnt. 137

7.5 EXamining MemOry.ouiiii it iiae e 138
8 Machine-LevelDebuggingcoviiiiiiin.. 141
8.1 Examining MachineCode................ccciiiiiinann.. 141
8.2 Machine Code Execution.ccoviiiinnnnn.nn. 142
8.3 ExaminingRegisters 142
8.4 Customizing MachineCode...................ccoviiin... 143

Vii

viii Debugging with DDD

9 Changingthe Program.cciuiiiiiienennn.. 145
9.1 EditingSource Code........oviiiiiiiii 145
9.1.1 Customizing Editingooiia.. 145

9.1.2 In-Place Editing...........oiiiiiiii i 145

9.2 RecompPiliNg. e 146
9.3 Patching....... oo 146
10 The Command-LineInterface............., 147
10.1 EnteringCommands...........ccoiiiiiiiiiiiniinans 147
10.1.1 Command Completian......................... 147

10.1.2 CommandHistory..............ccoviiivinnnn.. 148

10.1.3 Typing in the Source Windaw. 149

10.2 Entering Commands atthe TTY..............coviiiinn.. 150
10.3 Integrating DDD. ...t e 150
10.3.1 UsingDDDWwithEmacs............cvvvvennn. 150

10.3.2 Using DDD with XEmacs....................... 150

10.3.3 Using DDD WithKXGDBo vvveiii i 151

10.4 Defining BUttons. ... 151
10.4.1 CustomizingButtons........................... 152

10.5 DefiningCommands.............ccoviiiiiiiiineiinnn.. 154
10.5.1 Defining Simple Commands using GDB.......... 155

10.5.2 Defining Argument Commands using GDB...... 156

10.5.3 Defining Commands using Other Debuggers....157

Appendix A Application Defaults 159
Al ACHONS. . e 159

A1l General ACtIONS. ...t 159

A.1.2 DataDisplay Actions.............ccovviiiiin.. 159

A.1.3 Debugger Console Actions. 162

A.1.4 Source Window Actions..................coonn.. 163

A2 IMaAgES. . e 164
Appendix B Bugs and How To Report Them. 169
B.1 Whereto Send BugReportsc.ovviiiiiiiiinnnnn. 169

B.2 ISitaDDD BUQ?t 169

B.3 HowtoReportBugs...........ooiiiiiiiii s 169

B.4 WhattolIncludeinaBugReport.......................... 170

B.5 Getting DiagnostiCSvvii e e 170

B.5.1 LOQQING .. uvieei e e 170

B.5.1.1 DisablingLogging...................... 171

B.5.2 DebuggingDDD............cciiiii 171

B.5.3 Customizing Diagnostics.................cvuue.. 171

Appendix C Configuration Notes.coiiiiinnnn. 175
C.1 UsingDDDWIithGDBccoiiiiiiii i 175

C.1.1 UsingDDDWwWithWDB..............ccoiiivvannn.. 175

C.1.2 Using DDD with WindRiver GDB (Tornado)...... 175

C.2 UsingDDDWithDBX.cooiiii i 178

C.3 Using DDD with Ladebug.cooiiiiiint. 178

C.4 UsingDDDWIith XDB........oiiiiiiiiii i 178

C.5 UsingDDDWIithJDB.......coviiiiii i 178

C.6 UsingDDDwithPerl...........ccoiiiiiii i, 179

C.7 UsingDDDwithBash................ooiiiiiiiii, 179

C.8 Using DDD with LeSSTif........oiuiiiiii e 179
AppendixD Dirty Tricksooei i e 131
Appendix E ExtendingDDD ... 183
Appendix F Frequently Answered Questions 185
Appendix G GNU General Public License. 187
Preamble. 187
TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND
MODIFICATION ... o e 187

How to Apply These Terms to Your New Programs.............. 192
AppendixH HelpandAssistanceciviie.... 195
Appendix | GNU Free Documentation License. 197
ADDENDUM: How to use this License for your documenits...... 202
LabelIndexo e e 203
Key INdeX ..o e s e e 207
Command INdeX.ovi i e e 209
Resource Index.o e 211
File IndeX. ..o e e e 215

ConceptINdeX. . oo v v e 217

Debugging with DDD

Summary of DDD 1

Summary of DDD

The purpose of a debugger suchoas is to allow you to see what is going on “inside” another

program while it executes—or what another program was doing at the moment it crashed.

DpDD can do four main kinds of things (plus other things in support of these) to help you catch

bugs in the act:

Start your program, specifying anything that might affect its behavior.
Make your program stop on specified conditions.
Examine what has happened, when your program has stopped.

Change things in your program, so you can experiment with correcting the effects of one bug
and go on to learn about another.

Technically speakingypp is a front-end to a command-line debugger (callefdrior debugger,

because it lies at the layer beneathD). bbD supports the following inferior debuggers:

To debugexecutable binariesg/ou can usepp with ¢DB, DBX, Ladebug, Or XDB.

— GDB, theaNU debugger, is the recommended inferior debuggepfop. ¢DB supports
native executables binaries originally written in G;€ Java, Modula-2, Modula-3, Pas-
cal, Chill, Ada, and FORTRAN. (see=ction “Usingaps with Different Languages” in
Debugging with DB, for information on language supportd@oB.)

— As an alternative t@pB, you can useoDD with the DBx debugger, as found on several
UNIX systems. MosbBx incarnations offer fewer features thams, and some of the
more advancedBx features may not be supportedibybd. However, usingsx may be
useful ifacps does not understand or fully support the debugging information as generated
by your compiler.

— As an alternative t@:pB andDBX, you can usebDD with Ladebug, as found on Com-
paqg and DEC systems. Ladebug offers fewer features ¢iman) and some of the more
advanced Ladebug features may not be supportezblny However, using Ladebug may
be useful ifcpB or bBX do not understand or fully support the debugging information as
generated by your compilér.

— As another alternative tapB, you can useoDD with the xpB debugger, as found on
HP-UX systems.

To debuglava byte code programgou can useDD with JDB, the Java debugger, as 0k
1.1 and later.¥pD has been tested witibk 1.1 andipk 1.2.)

To debugPython programsyou can useDD with PYDB, a Python debugger.
To debugPerl programs you can useDD with the Perl debugger, as of Perl 5.003 and later.

To debugBash programsyou need a version Bash that supports extended debugging support.
To get this enhanced version seip://bashdb.sourceforge.net . You will need
version 2.05b-debugger-0.32 or later to work withp.

SeeSection 2.1.1 [Choosing an Inferior Debugger], paggfabechoosing the appropriate infe-

rior debugger. Seehapter 1 [Sample Session], pagddr getting a first impression afbp.

L within ppp (and this manual), Ladebug is considereasha variant. Hence, everything said fosx also

2

applies to Ladebug, unless stated otherwise.
xpB Will no longer be maintained in futunepp releases. Use a recemis version instead.

http://bashdb.sourceforge.net

2 Debugging with DDD

About this Manual

This manual comes in several formats:

e TheInfo format is used for browsing on character devices; it comes without pictures. You
should have a local copy installed, which you can browse via Emacs, the standrdtone
program, or fronpDD via ‘Help = pDD Reference ’

The pDpD source distributionddd-3.3.9.tar.gz ' contains this manual as pre-formatted
info files; you can also download them from
theDDD Www page

e ThePostScriptformat is used for printing on paper; it comes with pictures as well.

The ppD source distributionddd-3.3.9.tar.gz ' contains this manual as pre-formatted
PostScript file; you can also download it from
theDDD www page

e The PDF format is used for printing on paper as well as for online browsing; it comes with
pictures as well.

The pDpD source distributionddd-3.3.9.tar.gz ' contains this manual as pre-formatted
PDF file; you can also download it from
theDDD www page

e TheHTML format is used for browsing on bitmap devices; it includes several pictures. You
can view it using a HTML browser, typically from a local copy.

A pre-formatted HTML version of this manual comes in a sepavate package
‘ddd-3.3.9-html-manual.tar.gz "> you can browse and download it via
theDDD www page

The manual itself is written ingXinfo format; its source codeddd.texi ’is contained in the
DDD source distributionddd-3.3.9.tar.gz ’

The picture sources come in a separate packad-3.3.9-pics.tar.gz "; you need this
package only if you want to re-create the PostScript, HTML, or PDF versions.

Typographic conventions

The name for a key on the keyboard (or multiple keys pressed simultaneously)

run A sequence of characters to be typed on the keyboard.
‘~/.ddd/init ’

Afile.
‘Help’ A graphical control element, such as a button or menu item.

‘File = Open Program’
A sequence of menu items, starting at the top-level menu bar.

argc-1 Program code or debugger command.
A command-line option.

$ System prompt.

(gdb) Debugger prompt.

http://www.gnu.org/software/ddd/
http://www.gnu.org/software/ddd/
http://www.gnu.org/software/ddd/
http://www.gnu.org/software/ddd/

Summary of DDD 3

Cursor position.

version A metasyntactic variable; something that stands for another piece of text.
definition A definition.

caution Emphasis.

A warning Strong emphasis.

DDD An acronym.

Here’s an examplebtreak location’ is a typed command at théddb) ' prompt; the meta-
syntactic variablelocation’ would be replaced by the actual location. is the cursor position after
entering the command.

(gdb) break location
Breakpoint number at Ilocation

(gdb) _

Free software

DDD is free; this means that everyone is free to use it and free to redistribute it on a free basis.
DDD is not in the public domain; it is copyrighted and there are restrictions on its distribution, but
these restrictions are designed to permit everything that a good cooperating citizen would want to
do. What is not allowed is to try to prevent others from further sharing any versiomofthat
they might get from you. The precise conditions are found inidke General Public License that
comes withbpbp; SeeAppendix G [License], page 13for detalils.

The easiest way to get a copy obD is from someone else who has it. You need not ask for
permission to do so, or tell any one else; just copy it.

Getting DDD

If you have access to the Internet, you can get the latest versiommfrom the anonymousTp
server ftp.gnu.org "in the directory fgnu/ddd ’. This should contain the following files:

“‘ddd- version.tar.gz’
TheppD source distribution. This should be all you need.

“*ddd- version-html-manual.tar.gz’ ’
The bbb manual in HTML format. You need this only if you want to install a local
copy of theppp manual in HTML format.

‘‘ddd- version-pics.tar.gz’
Sources of images included in tlmp manual. You need this only if you want to
recreate the&pp manual.

DDD can also be found at numerous other archive sites around the world; check the file
‘ANNOUNCIH a ppp distribution for the latest known list.

Contributors to DDD

Dorothea Litkehaus and Andreas Zeller were the original author®of Many others have
contributed to its development. The fileSHangeLog’ and ‘THANKSIn the ppp distribution
approximates a blow-by-blow account.

4 Debugging with DDD

History of DDD

The history ofbDD is a story of code recycling. The oldest partsoofb were written in 1990,
whenAndreas ZelledesignedvsL, a box-based visual structure language for visualizing data and
program structures. ThesL interpreter and the Box library became part of Andreas’ Diploma
Thesis, a graphical syntax editor based on the Programming System Genecator

In 1992, thevsy and Box libraries were recycled for theorA project. FOrNORA, an experi-
mental inference-based software development tool set, Andreas wrote a graph editor (based on
and the Box libraries) and facilities for inter-process knowledge exchange. Based on these tools,
Dorothea Litkehauéhow Dorothea Krabiel) realizedppp as her Diploma Thesis, 1994.

The originalppp had no source window; this was added by Dorothea during the winter of
1994-1995. In the first quarter of 1995, finally, Andreas completed by adding command and
execution windows, extensions foBx and remote debugging as well as configuration support for
several architectures. Since then, Andreas has further maintained and extemgdzhsed on the
comments and suggestions of severab users around the world. See the comments incthe
source for details.

Major DDD events:
April, 1995 ppD 0.9: FirstbpD beta release.
May, 1995 DDD 1.0: First publicobDpD release.

December, 1995
pDD 1.4: Machine-level debugging, glyphs, Emacs integration.

October, 1996
DpDD 2.0: Color displaysxpB support, generioBx support, command tool.

May, 1997 ppD 2.1: Alias detection, button tips, status displays.

November, 1997
DDD 2.2: Sessions, display shortcuts.

June, 1998 ppD 3.0: Icon tool bar, Java supportyB support.

December, 1998
ppD 3.1: Data plotting, Perl support, Python support, Undo/Redo.

January, 2000
DpDD 3.2: New manual, Readline support, Ladebug support.

January, 2001
pDD 3.3: Data themes, JDB 1.2 support, VXWorks support.

November, 2002
DpDD 3.3.2: Bash support.

March, 2003
DpDD 3.3.3: Better Bash support. Compiles using modern tools thanks to Daniel Schep-
ler.

Chapter 1: A Sample DDD Session 5

1 A Sample DDD Session

You can use this manual at your leisure to read all albbauai. However, a handful of features
are enough to get started using the debugger. This chapter illustrates those features.

The sample progransample.c ' (seeSection 1.1 [Sample Program], page &xhibits the fol-
lowing bug. Normallysample should sort and print its arguments numerically, as in the following
example:

$ Jsample 8 754 1 3
134578
$

However, with certain arguments, this goes wrong:
$./sample 8000 7000 5000 1000 4000
1000 1913 4000 5000 7000
$

Although the output is sorted and contains the right number of arguments, some arguments are
missing and replaced by bogus numbers; h@d60 is missing and replaced 1913 .1

Let us usepDD to see what is going on. First, you must compsarnple.c ' for debugging
(seeSection 4.1 [Compiling for Debugging], page)/giving the -g ’ flag while compiling:

$ gcc -g -0 sample sample.c
$

Now, you can invokeoDD (seeChapter 2 [Invocation], page).bn thesample executable:
$ ddd sample

L Actual numbers and behavior on your system may vary.

6 Debugging with DDD

After a few secondshpp comes up. Th&ource Window contains the source of your debugged
program; use th&croll Bar to scroll through the file.

£2 DDD: fusriusersistslizelleridddidocisample.c =
Fle Edit View Program Commands Status Source Data ﬂelp'l
. - = - - - - T hT @ o M
Argument Field—#:[i=in e R d Le .
fFor (1 =h; 1 <size; 1+0)
{) Command Tool
;;ﬂt \é=a[1]; " L - - Run
or {3 =1:; 3 »=h && alj — > =
alil = ali - hl; Interrupt
i (‘a[;]’ i)v_ tep | Stepl

Hext | Meti
Unii | Finish
Cont| Kil

3 while (h =12

int main{int arac, char *argy[1}
£ Up | Down

int *a;
int i; Urido] [Feds

B = (int *Imalloc(fargc — 1) * sizeof(int)}; Edit | Make
for (i =0; i < argc —1; i+

alil = atoi(argv[i + 113;

shell_sort(a, argcl;

Source Window—# for i = 0; i <argc = 1; i+0) =— Scroll Bar
printf("zd ", alil);
printf{"wn");
free(a);
return 0;

)

00D 3.1.3 (i986-pc-Tinux—gnulibci), by Dorothea Litkehaus and Andreas Zeller.
Copyright @ 1393 Technische Universitdt Braunschweig, Germany.
Readinlg sywbols from sample...done.

dbd

Debugger Console —+s

Status Line ——=weicome to DOD 5.1.3 "Wiles Ahead” (1558-pe-lnus-gnuibe1) Hd

Initial DDD Window

The Debugger Console (at the bottom) containspp version information as well as apB

prompt!
GNU DDD Version 3.3.9, by Dorothea Lutkehaus and Andreas Zeller.
Copyright © 1995-1999 Technische Universitat Braunschweig, Germany.
Copyright © 1999-2001 Universitat Passau, Germany.
Copyright © 2001-2004 Universitat des Saarlandes, Germany.
Reading symbols from sample..done.
(gdb) _

The first thing to do now is to place Breakpoint (seeSection 5.1 [Breakpoints], page B1
making sample stop at a location you are interested in. Click on the blank space left to the
initialization ofa. The Argument field ‘(): ' now contains the locationg$ample.c:31). Now,
click on ‘Break ' to create a breakpoint at the location {i ”. You see a little red stop sign appear
in line 31.

! Re-invokeppp with ‘--gdb ', if you do not see a(gdb) ' prompt here (se&ection 2.1.1 [Choosing an
Inferior Debugger], page 35

Chapter 1: A Sample DDD Session 7

The next thing to do is to actualbxecute the program, such that you can examine its behavior
(seeChapter 6 [Running], page R1Select Program = Run’ to execute the program; th&un
Program ’ dialog appears.

£ DDD: lusriusersfstsl/zellerfddd/docisample.c =1

Fle Edit View Program Commands Status Source Data ﬂelpl

0| wddrdocssampe.cia £ D EHT @ 600 20 el G G0 B e

Wp Fiidn. s WGER Prnl Cedioy Pt show eiste. set Unden

i 4 P a
'::nr (i =h; 1 <size; i+
int v = alil; Run
nr(j—1]>—h&&a[j—h]>vj(h) ﬁ
alil = alj - hl: w
if (;[]!T B step | Stepi
3 _ DDD: Run Program i Hext | Nexti
3 while (h 1=1);
Arguments Uril| et
int mainCint argc, char e ———————— Mm
£) 87541 g | bown
int *a;
int i; Urelas | Fedles
Breakpoint—»@ Cint *malloc((e Edit | make
fur(l—U i ¢ arge

alil = atoi(argy

shell_sortia, argc);)
Run with Arguments

for (i =0; 1 < arge

srintF{'zd *. a |3000 7000 5000 1000 4000 Arguments
printf{"wn");
. freefa):
Click here to run o~ —Run | cancel | Hem

3

Reading symbols from sample...done. =

(gdb) break fusr/‘users/‘st51/zaﬂer[ddd!dnc/‘sampla <

Ereakpmnt 1 at 0x8048666: file fusr/users/st51/ze'l'\er/ddd/dnc/samp'\E <. line

(gdh) i =
/

A Breakpoint 1 at 4 file fusrfusersists ample.c, line 1. i

Running the Program

In ‘Run with Arguments ’, you can now enter arguments for tt@mple program. Enter the
arguments resulting in erroneous behavior here—tha8@90 7000 5000 1000 4000 . Click
on ‘Run’ to start execution with the arguments you just entered.

GDB now startssample . Execution stops after a few moments as the breakpoint is reached.
This is reported in the debugger console.
(gdb) break sample.c:31
Breakpoint 1 at 0x8048666: file sample.c, line 31.
(gdb) run 8000 7000 5000 1000 4000
Starting program: sample 8000 7000 5000 1000 4000

Breakpoint 1, main (argc=6, argv=0xbffff918) at sample.c:31
(gdb) _
The current execution line is indicated by a green arrow.
= a = (int *)malloc((argc - 1) * sizeof(int));
You can now examine the variable values. To examine a simple variable, you can simply move
the mouse pointer on its name and leave it there. After a second, a small window with the variable
value pops up (seBection 7.1 [Value Tips], page 1)5Try this with ‘argc ’ to see its value§).

The local variabled’ is not yet initialized; you'll probably se®x0 or some other invalid pointer
value.

Debugging with DDD

To execute the current line, click on theéxt ’ button on the command tool. The arrow ad-

vances to the following line. Now, point again cad to see that the value has changed and taat *
has actually been initialized.

£2 DDD: fusriusersists1izelleridddidocisample.c [_ IO x]
Fle Edit View Program Commands SEMS Source Data ﬂelp'l

o« 00 Z® @ @ el o

Laskup ra Beak bateh Pt DEpiRy et shon 6 &t Uhd

for (1 =h; 1 < size; i+

int v =alil;
for (= 1:
alil =
aljl =

3[>—h]&&a[jfh]>v i—=nh
if it j)
1

3 while (h 1=1);

int main(int argc, char *argv[1)
£

int *a;
int 17

@ a = (int *Imalloci{arge — 1) * sizeof(int));

Execution Position—=* it sl 1,17
shell_sortia, arge);

. for (i =0; i <argc — 1; i+
Value Tip SrintFCad "o AT
printFCHn®y:

freelal;

return 0;

Breakpoint 1, main (argc=k, argv—UxbffffEﬂB) at
Eusr;users;‘stﬂ/zeller/‘dddldnc/sample <
g next

A a=(int %) 0x8049878

Viewing Values in DDD

To examine the individual values of tha’‘array, enter a[0] ’ in the argument field (you can
clear it beforehand by clicking or{): ') and then click on thePrint ' button. This prints the
current value of() ' in the debugger console (s€gction 7.2 [Printing Values], page 1)0@n our
case, you'll get

(gdb) print af0]
$1 =0
(gdb) _

or some other value (note thad'*has only been allocated, but the contents have not yet been
initialized).

To see all members of' at once, you must use a speci@bn operator. Sinced’ has been
allocated dynamicallyzpB does not know its size; you must specify it explicitly using tk@
operator (se€ection 7.3.2.1 [Array Slices], page)1Enter a[0]@(argc - 1) ’"inthe argument
field and click on thePrint ' button. You get the firsargc - 1 elements of&’, or

(gdb) print a[0]@(argc - 1)
$2 = {0, 0, 0, O, 0}
(gdb) _

Chapter 1: A Sample DDD Session 9

Rather than usingPrint ' at each stop to see the current value af, ‘you can alsodisplay
‘a’, such that its is automatically displayed. With[0]@(argc-1) ' still being shown in the
argument field, click onDisplay ’. The contents ofa’ are now shown in a new window, th@ata
Window. Click on ‘Rotate '’ to rotate the array horizontally.

£ DDD: /usrfusersisisifzellertddd/doc/sample.c [[0
Fle Edit View Program Commands Status Source Data ﬂalpl

0:lam € Grac 11 (4,8 W @ G 7 arde— oo 8 e — Display Button

1: al0] @ (arge - 1) :

Data Window—-

i o
}while Cht=1);
3 Run
int mainint arge, char *arge[1} Interrupt.
. Step | Stepi

int *a;
int i; Mext | Mexti
@ a = (int ©malloc((argc = 1) ; sizeof(int)); Until | Frish

B for (i =0; 1 <argc - 1; i+
ali]l = atoifaravli + 112; Cont | kil

Up | Dawn

shell_sortla, argcd;
Undo | Fedor

for (i =0; 1 < argc —1; i+
printfi"sd ", alil):
printf("\n");

Ediit | Make

freelal;

return 0;

H

$1 =0
{gdb) print a[0] @ {argc — 1)
2 =

.0,0, 0,
(gdb) graph display a0l @ (argc — 12
(gdb) |

T

A Display 1: al0] @ arac — 1) (enabled, scope main, address 0x8049878)

Data Window

Now comes the assignment @f'*s members:
= for (i = 0; i < argc - 1; i++)
ali] = atoi(argv[i + 1));
You can now click onNext ' and ‘Next ' again to see how the individual members af are
being assigned. Changed members are highlighted.

To resume execution of the loop, use thitil " button. This makes:DB execute the program
until a line greater than the current is reached. Click ntil * until you end at the call of
‘shell_sort 'in

= shell_sort(a, argc);
At this point, ‘a”’s contents should beB000 7000 5000 1000 4000 . Click again on Next ’
to step over the call teshell_sort . DbD ends in
= for (i = 0; i < argc - 1; i++)
printf("%d ", a[i]);
and you see that afteshell_sort " has finished, the contents ai*are ‘1000, 1913, 4000,
5000, 7000 '—that s, ‘shell_sort " has somehow garbled the contents af *

To find out what has happened, execute the program once again. This time, you do not skip
through the initialization, but jump directly into theHell_sort ' call. Delete the old breakpoint
by selecting it and clicking orClear . Then, create a new breakpoint in line 35 before the call to
‘shell_sort ’. To execute the program once again, sel€bgram =- Run Again .

Once morepbD ends up before the call tahell_sort ™

10 Debugging with DDD

= shell_sort(a, argc);

This time, you want to examine closer whahell_sort ' is doing. Click on ‘Step ’ to step
into the call to Shell_sort . This leaves your program in the first executable line, or

= int h = 1;

while the debugger console tells us the function just entered:
(gdb) step
shell_sort (a=0x8049878, size=6) at sample.c:9
(gdb) _

This output that shows the function wheigample ' is now suspended (and its arguments)
is called astack frame display. It shows a summary of the stack. You can uSgatus =
Backtrace 'to see where you are in the stack as a whole; selecting a line (or clickingmmand

‘Down) will let you move through the stack. Note how th&' display disappears when its frame
is left.

£ DDD: Jusriusersistsizellerfddd/doc/sample.c M=
Hle Edit View Program Commands Status Source Data ﬂelpl

0| 7ddd/doc/sample. g 4 @ GHT @ Gt 2 a0 CF 0 B
Lookup Fins -Bremk’ RIC(Print OEpEy Hiot Hidef Rotetas ser Updiep:

Ey
£ 5
L int i, 3 BT
SR < 000 Bacicrace] i
=, |
h=h* E Backirace Riprpk
3 while (h <= step | stepl
do #2 0xB0484be in ___crt dummy__ O £
/=3 #1 0x80486ed in main () at sample.c:3S Mext | Nexti
PR 0 chell cort O at sanle.c:d T
int w
Cont | Hil
Backtrace —
. al U | B
if O
al Undo | Ferl
3 while h 1= o e
up | v Close Help
j‘gnt mainfint arge,
int *a;
int i;
Y
Jusrfusers/sts1/zel Ter fddd/doc/sample. c: 35 o)

(gdb) down

#0 chell_sort (a=0x8049578, size=5) at
éu;g;usars!stﬂ/zaﬂer/dddfdnc/samp]e.c:ﬁ
i

i

A Updating displays...done.

The DDD Backtrace

Let us now check whetheshell _sort s arguments are correct. After returning to the lowest
frame, enter@[0]@size ' inthe argument field and click orPrint ’:
(gdb) print a[0] @ size
$4 = {8000, 7000, 5000, 1000, 4000, 1913}
(gdb) _

Surprise! Where does this additional vall&l3 come from? The answer is simple: The array
size as passed irsize ’to ‘shell_sort '’ is too large by one-1913 is a bogus value which
happens to reside in memory after.' And this last value is being sorted in as well.

To see whether this is actually the problem cause, you can now assign the correct vsilzee to ‘
(seeSection 7.3.3 [Assignment], page)1Select size ’in the source code and click osét '
A dialog pops up where you can edit the variable value.

Chapter 1: A Sample DDD Session

11

£2 DDD: Jusriusersistsizellerfdddidocfsample.c [_ 10}
Fle Edit View Program Commands Status Source Data Help
0 size C B @ B W 2o A G 5 R o
Lockup Findi Ereak Uatch Pt DopEw Plst jde foir Set Ui
. . = &
Select Vanable n the source itatwc void shelT_sort(int all, int EREE) 3 DDD EX
Run
int i, i
B int h=1; Interrupt
do {h RPN - DD: Set Value X Step | Stepl
énw?ﬂe th <= Selviilleorsize Mext | Mexti
h /=3 Until | Firish
. $ I?E i
Edit value P € e = Cont | Kil
int w2 Up | Dx
for (4 i
ol ok | Apply | | cancel Help | tndo] Feric || | |
if (;[Edit | Make
3
3 while (h =13
wfnt main{int argc, char *argvl[l}
int *a;
J
#0 shell_sort (a=0x8049878, size=6) at o
Jusrfusers/stsl/zeller/ddd/doc/sample. c:9
(adb} print all] @ sizd
4 = {8000, 7000, 5000, 1000, 4000, 19133
7
1 $4 = {8000, 7000, 5000, 1000, 4000, 1913} F

— Set Button

Change the value otize ’to 5 and click on OK. Then, click on Finish
" function:

tion of the ‘shell_sort

Setting a Value

(gdb) set variable size = 5

(gdb) finish

Run till exit from #0

’to resume execu-

shell_sort (a=0x8049878, size=5) at sample.c:9

0x80486ed in main (argc=6, argv=0xbffffo18) at sample.c:35

(gdb) _

12 Debugging with DDD

Success! Thed’ display now contains the correct values000, 4000, 5000, 7000,
8000".

£ DDD: fusriusersisislizelleridddidddisample.c M=
Hle Edit View Program Commands Stalus Source Dala Help |
| siza 7B g @ o 2 oa ha A7 5w
Lookup Fings Ereak baich Print Ospiy POt e Goie St Unoen
‘|3:_alol @ (arge — 1) :
Changed values ?_ 1000[4000]5000[7000]8000]|"
iy
Snr (i =hs 1 <size; 141D == ooo E3|NB
Wfﬂt \é=a[i]; b i % W Run
or {j =1; Jj »=h && alj - P
; (a[]'] :)a[]' = hl; Interrupt
if (=1
ali] ¥ - Step | Stepi
i Mt | et
} while (h 1=1);
Until | Finish
int main(int argc, char *argv[l) Cont| Kl
£ Up | Down
int *a;
int i; Unda | Feda
a = (int *Imalloc{{arge — 13 * sizeof(intd); A
for (i =0; 1 <argc —1; i+
alil = atoi(aravli + 113;
shell_sart(a, argc);
for (i =0; i <argc —1; i+
printf("sd ", alil); ¥/
Run til1 ewit from #1 shell_sort (a=0x8043300, size=5) at e
Jusrfusers/stst/zeller/ddd/ddd/sample.c: 9
0%804872d in main (arac=6, argv=0zbffffa2c) at
Jusrifusers/stsi/zeller/ddd/ddd/sample. ¢35
(gdb) | =
7
A Updating displays. dane ‘F

Changed Values after Setting

You can verify that these values are actually printed to standard output by further executing the
program. Click onCont ’ to continue execution.

(gdb) cont
1000 4000 5000 7000 8000

Program exited normally.
(gdb) _

The messageProgram exited normally. "is from GDB; it indicates that thesample
program has finished executing.

Having found the problem cause, you can now fix the source code. ClicEdinh ° to edit
‘sample.c ’, and change the line

shell_sort(a, argc);
to the correct invocation
shell_sort(a, argc - 1);
You can now recompilsample
$ gcc -g -0 sample sample.c
$ _
and verify (via Program =- Run Again ’) that sample works fine now.

(gdb) run

‘sample’ has changed; re-reading symbols.

Reading in symbols..done.

Starting program: sample 8000 7000 5000 1000 4000

Chapter 1: A Sample DDD Session

1000 4000 5000 7000 8000

Program exited normally.
(gdb) _
All is done; the program works fine now. You can end thisb session with Program =
Exit "or Ctrl +Q

13

14

1.1 Sample Program

Here’s the sourcesample.c ' of the sample program.

Debugging with DDD

e N
/* sample.c -- Sample C program to be debugged with DDD
*/
#include <stdio.h>
#include <stdlib.h>
static void shell_sort(int a[], int size)
{
int i, j;
int h = 1;
do {
h=h*3+ 1;
} while (h <= size);
do {
h /= 3;
for (i = h; i < size; i++)
{
int v = alil;
for =1;) >=h && afj - h] > v; j -= h)
afi] = afj - hJ;
if (i =]
afj] = v,
}
} while (h = 1);
}
int main(int argc, char *argvl[])
{
int *a;
int i
a = (int *)malloc((argc - 1) * sizeof(int));
for (i = 0; i < argc - 1; i++)
ali] = atoi(argv[i + 1));
shell_sort(a, argc);
for (i = 0; i < argc - 1; i++)
printf("%d ", ali]);
printf("\n");
free(a);
return O;
}
N J

Chapter 2: Getting In and Out of DDD 15

2 Getting In and Out of DDD

This chapter discusses how to startb, and how to get out of it. The essentials are:
e Type ‘ddd’ to startppp (seeSection 2.1 [Invoking], page)5
e Use File = Exit ’or Ctrl +Qto exit (seeSection 2.2 [Quitting], page 38

2.1 Invoking DDD

Normally, you can rumbDD by invoking the progranddd .

You can also rumbDD with a variety of arguments and options, to specify more of your debug-
ging environment at the outset.

The most usual way to stapbp is with one argument, specifying an executable program:
ddd program

If you useGDB, DBX, Ladebug, orxpB as inferior debuggers, you can also start with both an
executable program and a core file specified:

ddd program core

You can, instead, specify a process ID as a second argument, if you want to debug a running
process:

ddd program 1234

would attaclppp to procesd234 (unless you also have a file namd@34’; pbp does check for
a core file first).

You can further contrabbpp by invoking it with specificoptions. To get a list ofbDD options,
invokeDpDD as

ddd --help

Most important are the options to specify the inferior debugger$se¢on 2.1.1 [Choosing an
Inferior Debugger], page)5but you can also customize several aspectsmab upon invocation
(seeSection 2.1.2 [Options], page L6

DDD also understands the usual X options such-display ' or ‘-geometry '. SeeSec-
tion 2.1.3 [X Options], page 24or details.

All arguments and options that are not understoodby are passed to the inferior debug-
ger; SeeSection 2.1.4 [Inferior Debugger Options], page for a survey. To pass an option to
the inferior debugger that conflicts with an X option, or wittbap option listed here, use the
‘--debugger ’option (seeSection 2.1.2 [Options], page L6

2.1.1 Choosing an Inferior Debugger

The most frequently required options are those to choose a specific inferior debugger.
Normally, the inferior debugger is determined by the program to analyze:

e If the program requires a specific interpreter, such as Java, Python, Perl or Bash, then you
should use aps, pYDB, Perl, or Bash inferior debugger.

Use
ddd --jdb program
ddd --pydb program

16 Debugging with DDD

ddd --perl program

ddd --bash program
ddd --interpreter=’ path-to-debugger-bash-debugger’ program

to runppD With JDB, PYDB, Perl, or Bash as an inferior debugger.

e [fthe program is an executable binary, you shouldass, pBx, Ladebug, oxDB. In general,
GDB (or its HP variantwpB) provides the most functionality of these debuggers.

Use
ddd --gdb program
ddd --wdb program
ddd --dbx program
ddd --ladebug program
ddd --xdb program
to runbDD with GDB, WDB, DBX, Ladebug, oxDB as inferior debugger.

If you invoke bDD without any of these options, but givepeogram to analyze, themnpbD will
automatically determine the inferior debugger:

e If program is a Python program, a Perl script, or a Java class; will invoke the appropriate
debugger.

e If program is an executable binargbb will invoke its default debugger for executables (usu-
ally ¢pB).

SeeSection 2.5 [Customizing Debugger Interaction], pagef@rimore details on determining
the inferior debugger.

2.1.2 DDD Options

You can further control howpD starts up using the following options. All options may be
abbreviated, as long as they are unambiguous; single dashastead of double dashes ‘'’ may
also be used. Almost all options control a spedifitb resource or resource class (Seection 3.6
[Customizing], page 60

‘--attach-windows '
Attach the source and data windows to the debugger console, creating one single big
DpDD window. This is the default setting.

Giving this option is equivalent to setting theD ‘Separate ’ resource class to
‘off . SeeSection 3.6.4.2 [Window Layout], page @6r details.

‘--attach-source-window
Attach only the source window to the debugger console.

Giving this option is equivalent to setting thepp ‘separateSourceWindow
resource tooff '. SeeSection 3.6.4.2 [Window Layout], page &or details.

‘--attach-data-window '
Attach only the source window to the debugger console.

Giving this option is equivalent to setting theoD ‘separateDataWindow
source to off '. SeeSection 3.6.4.2 [Window Layout], page &or details.

re-

Chapter 2: Getting In and Out of DDD 17

‘--automatic-debugger

‘--button-tips

‘--configuration

‘--check-configuration

‘--data-window

‘--debugger

‘--debugger-console

Determine the inferior debugger automatically from the given arguments.

Giving this option is equivalent to setting theoD ‘autoDebugger ' resource to
‘on’. SeeSection 2.5 [Customizing Debugger Interaction], pagef@idetails.

Enable button tips.

Giving this option is equivalent to setting thep ‘buttonTips ' resource toon'.
SeeSection 3.6.2 [Customizing Help], page, 6ar details.

Print theppD configuration settings on standard output and exit.

Giving this option is equivalent to setting thep ‘showConfiguration 'resource
to ‘on’. SeeSection B.5 [Diagnostics], page 1,/or details.

Check theppp environment (in particular, the X configuration), report any possible
problem causes and exit.

Giving this option is equivalent to setting theoD ‘checkConfiguration
source toon’. SeeSection B.5 [Diagnostics], page 1,7or details.

re-

Open the data window upon start-up.

Giving this option is equivalent to setting thabD ‘openDataWindow ’ resource to
‘on’. SeeSection 3.6.4.4 [Toggling Windows], page, Tor detalils.

Run pBX as inferior debugger.

Giving this option is equivalent to setting tleD ‘debugger ' resource to dbx'.
SeeSection 2.5 [Customizing Debugger Interaction], pagef@rdetails.

name’
Invoke the inferior debuggerame. This is useful if you have several debugger versions
around, or if the inferior debugger cannot be invoked under its usual namegdbe.
wdb, dbx, xdb, jdb , pydb, orperl).
This option can also be used to pass options to the inferior debugger that would oth-
erwise conflict withppp options. For instance, to pass the optieth ‘directory’ to
XDB, US€:

ddd --debugger "xdb -d directory"

If you use the ‘-debugger ' option, be sure that the type of inferior debugger
is specified as well. That is, use one of the optiongdb ’, ‘--dbx ’, ‘--xdb ’,
‘--jdb ', *--pydb ’, or‘--perl ' (unless the default setting works fine).

Giving this option is equivalent to setting teD ‘debuggerCommand’ resource

to name. SeeSection 2.5 [Customizing Debugger Interaction], pagef@ddetails.

Open the debugger console upon start-up.

Giving this option is equivalent to setting tmeD ‘openDebuggerConsole
source toon’. SeeSection 3.6.4.4 [Toggling Windows], page, for details.

re-

18

‘--disassemble

‘--exec-window

Debugging with DDD

Disassemble the source code. See also-the-disassemble " option, below.

Giving this option is equivalent to setting tb®p ‘disassemble ' resource toon’.
SeeSection 4.4 [Customizing Source], page f details.

Run the debugged program in a specially created execution window. This is useful
for programs that have special terminal requirements not provided by the debugger
window, as raw keyboard processing or terminal control sequencesSe3¢en 6.2
[Using the Execution Window], page 9fbr details.

Giving this option is equivalent to setting theoD ‘separateExecWindow ' re-
source toon’. SeeSection 6.2.1 [Customizing the Execution Window], pagefés
details.

‘--font fontname’
‘-fn fontname’

‘--fonts

‘--fontsize

‘--fullname
‘_f 1

l__gdb i)

‘--glyphs

Usefontname as default font.

Giving this option is equivalent to setting thebp ‘defaultFont ’ resource to
‘fontname . SeeSection 3.6.4.3 [Customizing Fonts], page for details.

Show the font definitions used lmypD on standard output.
Giving this option is equivalent to setting tleD ‘showFonts ' resource to 6n’.
SeeSection B.5 [Diagnostics], page 1,7or details.

size’
Set the default font size taze (in 1/10 points). To makepb use 12-point fonts, say
‘--fontsize 120 "

Giving this option is equivalent to setting thepp ‘FontSize ' resource class to
‘size . SeeSection 3.6.4.3 [Customizing Fonts], page i details.

Enable therTy interface, taking additional debugger commands from standard input
and forwarding debugger output on standard output. Current positions are issued in
apB ‘-fullname ' format suitable for debugger front-ends. By default, both the
debugger console and source window are disabled. S8egon 10.2 [TTY mode],

page 150for a discussion.

Giving this option is equivalent to setting thep ‘TTYModé€ resource class tan'.
SeeSection 10.2 [TTY mode], page 15for details.
Run ¢pB as inferior debugger.

Giving this option is equivalent to setting tleD ‘debugger ' resource to gdb’.
SeeSection 2.5 [Customizing Debugger Interaction], pagef@rdetails.

Display the current execution position and breakpoints as glyphs. See also the
‘--no-glyphs ' option, below.

Giving this option is equivalent to setting teop ‘displayGlyphs ' resource to
‘on’. SeeSection 4.4 [Customizing Source], page for details.

Chapter 2: Getting In and Out of DDD 19

‘--help

l_h)

-7 Give a list of frequently used options. Show options of the inferior debugger as well.
Giving this option is equivalent to setting thaD ‘showlnvocation ’ resource to
‘on’. SeeSection B.5 [Diagnostics], page 1,/or details.

‘--host hostname’

--host username @hostname’
Invoke the inferior debugger directly on the remote hlosttname. If username is
given and the--login ’ option is not used, usasername as remote user name. See
Section 2.4.2 [Remote Debugger], page fé details.

Giving this option is equivalent to setting theoD ‘debuggerHost ' resource to
hostname. SeeSection 2.4.2 [Remote Debugger], page fér details.

‘-<jdb ' RunJDB as inferior debugger.

Giving this option is equivalent to setting tleD ‘debugger ’ resource to gdb’.
SeeSection 2.5 [Customizing Debugger Interaction], pagef@ridetails.

‘--ladebug
Run Ladebug as inferior debugger.
Giving this option is equivalent to setting thepp ‘debugger ' resource to
‘ladebug . See Section 2.5 [Customizing Debugger Interaction], page fof

details.
‘--lesstif-hacks '
Equivalent to :-lesstif-version 999 ". Deprecated.
Giving this option is equivalent to setting thaD ‘lessTifVersion ' resource to
999. SeeSection C.8 [LessTif|, page 17for details.
‘--lesstif-version version’

Enable some hacks to makeb run properly with LessTif. SeBection C.8 [LessTif],
page 179for a discussion.

Giving this option is equivalent to setting theD ‘lessTifVersion " resource to
version. SeeSection C.8 [LessTif], page 17for details.

‘--license
Print theppD license on standard output and exit.

Giving this option is equivalent to setting tlmaD ‘showLicense ’resource toon.
SeeSection B.5 [Diagnostics], page 1,7or details.

‘--login username’

‘-| username’
Useusername as remote user name. S8ection 2.4.2 [Remote Debugger], page 32
for details.

Giving this option is equivalent to setting tb®D ‘debuggerHostLogin 'resource
to username. SeeSection 2.4.2 [Remote Debugger], page fér details.

‘--maintenance
Enable the top-levelMaintenance ' menu with options for debuggingpp. See
Section 3.1.9 [Maintenance Menu], page ft# details.

20 Debugging with DDD

Giving this option is equivalent to setting tl®D ‘maintenance ' resource toon.
SeeSection 3.1.9 [Maintenance Menu], page ## details.

‘--manual
Print theppb manual on standard output and exit.

Giving this option is equivalent to setting tleoD ‘showManual ’ resource toon.
SeeSection B.5 [Diagnostics], page 1,7or details.

‘--news ' PrintthepDD hews on standard output and exit.
Giving this option is equivalent to setting tl®D ‘showNews’ resource toon. See
Section B.5 [Diagnostics], page 1,40r details.

‘--no-button-tips '
Disable button tips.

Giving this option is equivalent to setting tb@D ‘buttonTips '’ resource to off
SeeSection 3.6.2 [Customizing Help], page, 6adr details.

‘--no-data-window
Do not open the data window upon start-up.

Giving this option is equivalent to setting thaD ‘openDataWindow ’ resource to
‘off . SeeSection 3.6.4.4 [Toggling Windows], page, 70r details.

‘--no-debugger-console
Do not open the debugger console upon start-up.
Giving this option is equivalent to setting tmeD ‘openDebuggerConsole
source to Off '. SeeSection 3.6.4.4 [Toggling Windows], page, for details.

re-

‘--no-disassemble '
Do not disassemble the source code.
Giving this option is equivalent to setting thepp ‘disassemble
‘off '. SeeSection 4.4 [Customizing Source], page f details.

resource to

‘--no-exec-window
Do not run the debugged program in a specially created execution window; use the
debugger console instead. Useful for programs that have little terminal input/output,
or for remote debugging. Sée=ction 6.2 [Using the Execution Window]|, page for
details.

Giving this option is equivalent to setting theoD ‘separateExecWindow ' re-
source tooff '. SeeSection 6.2.1 [Customizing the Execution Window], pagefés
details.

‘--no-glyphs
Do not use glyphs; display the current execution position and breakpoints as text char-
acters.

Giving this option is equivalent to setting tmeD ‘displayGlyphs ' resource to
‘off '. SeeSection 4.4 [Customizing Source], page fof details.

‘--no-lesstif-hacks
Equivalent to :-lesstif-version 1000 ". Deprecated.
Giving this option is equivalent to setting thaD ‘lessTifVersion ' resource to
1000. SeeSection C.8 [LessTif], page 17for details.

Chapter 2: Getting In and Out of DDD 21

‘--no-maintenance

‘--no-source-window

‘--no-value-tips

‘ -NnwW ’

‘--perl

‘--pydb

‘--panned-graph-editor

‘--play-log

Do not enable the top-leveMaintenance ' menu with options for debuggingpp.
This is the default. SeBection 3.1.9 [Maintenance Menu], page for details.

Giving this option is equivalent to setting thaD ‘maintenance ' resource tooff.
SeeSection 3.1.9 [Maintenance Menu], page ## details.

Do not open the source window upon start-up.

Giving this option is equivalent to setting th@D ‘openSourceWindow ' resource
to ‘off ’. SeeSection 3.6.4.4 [Toggling Windows], page, for details.

Disable value tips.

Giving this option is equivalent to setting thaD ‘valueTips ' resource to off
SeeSection 7.1 [Value Tips], page 10for details.

Do not use the X window interface. Start the inferior debugger on the local host.

Run Perl as inferior debugger.

Giving this option is equivalent to setting thD ‘debugger ' resource to perl .
SeeSection 2.5 [Customizing Debugger Interaction], pagef@rdetails.

Run pYDB as inferior debugger.

Giving this option is equivalent to setting theD ‘debugger ' resource to pydb .
SeeSection 2.5 [Customizing Debugger Interaction], paggef@ridetails.

Use an Athena panner to scroll the data window. Most people prefer panners on
scroll bars, since panners allow two-dimensional scrolling. However, the panner is
off by default, since some M*tif implementations do not work well with Athena
widgets. SeeSection 7.3.5.5 [Display Resources], page ,1ft# details; see also
‘--scrolled-graph-editor ", below.

Giving this option is equivalent to setting tb®p ‘pannedGraphEditor ' resource
to ‘on’. SeeSection 7.3.5.5 [Display Resources], page,faBdetails.
log-file’
Recapitulate a previousbD session.
ddd --play-log log-file
invokesppD as inferior debugger, simulating the inferior debugger givelojnfile
(see below). This is useful for debuggingp.

Giving this option is equivalent to setting thep ‘playLog ’resource tobn’. See
Section 2.5 [Customizing Debugger Interaction], pagef@rdetails.

‘--PLAY log-file’

Simulate an inferior debuggdig-file is a ‘~/.ddd/log ' file as generated by some
previouspDD session (se&ection B.5.1 [Logging], page 1Y.0When a command is
entered, scafog-file for this command and re-issue the logged reply; if the command
is not found, do nothing. This is used by theplay ' option.

22

Debugging with DDD

‘--rhost hostname’
‘--rhost username @ostname’

‘--scrolled-graph-editor

‘--separate-windows

‘--separate

‘--session

‘--source-window

‘--status-at-

‘--status-at-top

‘--sync-debugger

Run the inferior debugger interactively on the remote tostname. If username is
given and the--login ' option is not used, usesername as remote user name. See
Section 2.4.2 [Remote Debugger], page fé? details.

Giving this option is equivalent to setting tlD ‘debuggerRHost ' resource to
hostname. SeeSection 2.4.2 [Remote Debugger], pageg fér details.

Use M*tif scroll bars to scroll the data window. This is the default in mosb
configurations. Seé&ection 7.3.5.5 [Display Resources], page,lfof details; see
also “-panned-graph-editor ', above.

Giving this option is equivalent to setting tbeD ‘pannedGraphEditor 'resource
to ‘off '. SeeSection 7.3.5.5 [Display Resources], page,faBdetails.

Separate the console, source and data windows. See alsedtiach * options,
above.

Giving this option is equivalent to setting thepD ‘Separate ' resource class to
‘off . SeeSection 3.6.4.2 [Window Layout], page @6r details.

session’
Load session upon start-up. Seé&ection 2.3.2 [Resuming Sessions], page féb
details.
Giving this option is equivalent to setting tleD ‘session ' resource tosession.
SeeSection 2.3.2 [Resuming Sessions], pagef@0details.

Open the source window upon start-up.
Giving this option is equivalent to setting tihD ‘openSourceWindow ' resource
to ‘on’. SeeSection 3.6.4.4 [Toggling Windows], page, for details.

bottom
Place the status line at the bottom of the source window.

Giving this option is equivalent to setting thebD ‘statusAtBottom ' resource to
‘on’. SeeSection 3.6.4.2 [Window Layout], page @6r details.

Place the status line at the top of the source window.

Giving this option is equivalent to setting thaD *‘statusAtBottom ’ resource to
‘off . SeeSection 3.6.4.2 [Window Layout], page @0r details.

Do not process X events while the debugger is busy. This may result in slightly better
performance on single-processor systems.

Giving this option is equivalent to setting tlm®D ‘synchronousDebugger ' re-
source to 6n’. See Section 2.5 [Customizing Debugger Interaction], page fa4
details.

Chapter 2: Getting In and Out of DDD 23

‘--toolbars-at-bottom
Place the toolbars at the bottom of the respective window.

Giving this option is equivalent to setting tiD ‘toolbarsAtBottom ' resource
to ‘on’. SeeSection 3.6.4.2 [Window Layout], page &or details.

‘--toolbars-at-top '
Place the toolbars at the top of the respective window.

Giving this option is equivalent to setting th@bD ‘toolbarsAtBottom ' resource
to ‘off ’. SeeSection 3.6.4.2 [Window Layout], page ,dor details.

‘--trace
Show the interaction betweermp and the inferior debugger on standard error. This is
useful for debuggingpp. If ‘--trace '’ is not specified, this information is written
into ‘~/.ddd/log ' (* ~’ stands for your home directory), such that you can also do
a post-mortem debugging. Se&ection B.5.1 [Logging], page 17for details about
logging.

Giving this option is equivalent to setting thep ‘trace ' resource toon. SeeSec-
tion B.5 [Diagnostics], page 17for details.

-t EnableTTy interface, taking additional debugger commands from standard input and
forwarding debugger output on standard output. Current positions are issued in a for-
mat readable for humans. By default, the debugger console is disabled.

Giving this option is equivalent to setting thep ‘ttyMode ’resource to6n’. See
Section 10.2 [TTY mode], page 15for details.

‘--value-tips
Enable value tips.

Giving this option is equivalent to setting tleD ‘valueTips ' resource to 6n’.
SeeSection 7.1 [Value Tips], page 10for details.

‘--version
‘v

Print theppD version on standard output and exit.

Giving this option is equivalent to setting tb®p ‘showVersion ’resource toon’.
SeeSection B.5 [Diagnostics], page 1,f0r details.

‘--vsl-library library’
Load thevsu library library instead of using thepp built-in library. This is useful
for customizing display shapes and fonts.

Giving this option is equivalent to setting tbep ‘vslLibrary ’resource tdibrary.
SeeSection 7.3.5.6 [VSL Resources], page 128 details.

‘--vsl-path path’
SearchvsL libraries inpath (a colon-separated directory list).

Giving this option is equivalent to setting tiD ‘vsIPath ' resource tgpath. See
Section 7.3.5.6 [VSL Resources], page]1{e8 details.

‘--vsl-help
Show a list of further options controlling thesL interpreter. These options are in-
tended for debugging purposes and are subject to change without further notice.

24 Debugging with DDD

‘--wdb ' RunwbDB as inferior debugger.
Giving this option is equivalent to setting tleD ‘debugger ' resource to wdb'.
SeeSection 2.5 [Customizing Debugger Interaction], pagef@ridetails.

‘--xdb ’* RunxDB as inferior debugger.

Giving this option is equivalent to setting tleD ‘debugger ' resource to xdb .
SeeSection 2.5 [Customizing Debugger Interaction], pagef@rdetails.

2.1.3 X Options

DDD also understands the following X options. Note that these options only take a single dash

‘-display display’
Use the X servedisplay. By default,display is taken from thédISPLAY environment
variable.

‘-geometry geometry’
Specify the initial size and location of the debugger console.

‘-iconic
Startppp iconified.
‘-name name’
Give DDD the namename.
‘-selectionTimeout timeout’
Specify the timeout in milliseconds within which two communicating applications
must respond to one another for a selection request.
‘-title name’

Give theppD window the titlename.

‘-Xrm resourcestring’
Specify a resource name and value to override any defaults.

2.1.4 Inferior Debugger Options

All options thatpbpD does not recognize are passed to the inferior debugger. This section lists
the most useful options of the different inferior debuggers supportethy In case these options
do not work as expected, please lookup the appropriate reference.

2.1.4.1 GDB Options
ThesecDB options are useful when usingbp with GbB as inferior debugger. Single dashes
‘- "instead of double dashes ‘' may also be used.

‘-b baudrate’
Set serial port baud rate used for remote debugging.

‘--cd dir’ Change current directory tair.

‘—-command file’
ExecutecDB commands fronfile.

Chapter 2: Getting In and Out of DDD 25

‘--core corefile’
Analyze the core dumgporefile.

‘--directory dir’
‘-d dir’ Add directory to the path to search for source files.

‘--exec execfile’
Useexecfile as the executable.

‘--mapped ’
Use mapped symbol files if supported on this system.

’

‘--nx

-n Do not read :gdbinit " file.

‘--readnow
Fully read symbol files on first access.

‘--se file’
Usefile as symbol file and executable file.

‘--symbols symfile’
Read symbols fromymfile.

Seesection “Invoking GDB” inDebugging with GDB, for further options that can be used with
GDB.

2.1.4.2 DBX and Ladebug Options

DBX variants differ widely in their options, so we cannot give a list here. Check outtthd)
andladebug(1) manual pages.

2.1.4.3 XDB Options

ThesexDpB options are useful when usimgpp with xpB as inferior debugger.
‘-d dir’ Specify dir as an alternate directory where source files are located.

‘-P process-id’
Specify the process ID of an existing process the user wants to debug.

‘“-| library’
Pre-load information about the shared librdiyrary. ‘-| ALL ' means always pre-
load shared library information.

‘S num’ Set the size of the string cache tam bytes (default is 1024, which is also the mini-
mum).

-S Enable debugging of shared libraries.

Further options can be found in tlkdb(1) manual page.

2.1.4.4 JDB Options

26 Debugging with DDD

JDB as of JDK 1.2

The following JDB options are useful when usingpbp with JpB (from JDK 1.2) as inferior
debugger.

‘-attach address’
attach to a running virtual machine (VM) address using standard connector

‘-listen address’
wait for a running VM to connect aiddress using standard connector

‘-listenany
wait for a running VM to connect at any available address using standard connector

‘-launch
launch VM immediately instead of waiting forun ' command

ThesespB options are forwarded to the debuggee:

‘-verbose[.class|gc|jni]
v Turn on verbose mode.

‘-D name=value’
Set the system properhame to value.

‘-classpath path’
List directories in which to look for classepath is a list of directories separated by
colons.

*-X option’
Non-standard target VM option

JDB as of JDK 1.1

The following JDB options are useful when usingop with JpB (from JpDK 1.1) as inferior
debugger.

‘-host hostname’
host machine of interpreter to attach to

‘-password psswd’
password of interpreter to attach to (froméebug)

ThesespB options are forwarded to the debuggee:

‘-verbose
VAN Turn on verbose mode.

‘-debug ' Enable remote Java debugging,

‘-noasyncgc
Don't allow asynchronous garbage collection.

‘-verbosegc
Print a message when garbage collection occurs.

Chapter 2: Getting In and Out of DDD 27

‘-noclassgc
Disable class garbage collection.

‘-checksource
‘-cs Check if source is newer when loading classes.

‘-SS number’
Set the maximum native stack size for any thread.

‘-0SS number’
Set the maximum Java stack size for any thread.

‘-ms number’
Set the initial Java heap size.

‘-mx number’

Set the maximum Java heap size.
‘-D name=value’

Set the system properhame to value.

‘-classpath path’
List directories in which to look for classepath is a list of directories separated by
colons.
‘-prof ’
‘-prof. file’
Output profiling data to./java.prof " If file is given, write the data ta/ file’.
‘-verify ’
Verify all classes when read in.

‘-verifyremote
Verify classes read in over the network (default).

‘-noverify "’
Do not verify any class.

‘-dbgtrace ’
Print info for debuggingDB.

Further options can be found in theB documentation.
2.1.4.5 PYDB Options

For a list of usefubyDB options, check out theybB documentation.
2.1.4.6 Perl Options

The most important Perl option to use wibtloD is ‘-w’; it enables several important warnings.
For further options, see therlrun(1) manual page.

2.1.4.7 Bash Options

If you have the proper bash installed, the option needed to specify debugging support is
‘--debugger . (If your bash doesn't understand this option you need to pick up a version of
bash that does fronnttp://bashdb.sourceforge.net)

http://bashdb.sourceforge.net

28 Debugging with DDD

2.1.5 Multiple DDD Instances

If you have multiplepDD instances running, they share common preferences and history files.
This means that changes applied to one instance may get lost when being overwritten by the other in-
stance DDD has two means to protect you against unwanted losses. The first means is an automatic
reloading of changed options, controlled by the following resourcegseéon 3.6 [Customizing],

page 60

checkOptions (class CheckOptions) Resource
Everyn seconds, where is the value of this resourcepp checks whether the options file
has changed. Default 80, which means that every 30 secondsp checks for the options
file. Setting this resource @ disables checking for changed option files.

Normally, automatic reloading of options should already suffice. If you need stronger protection,
DDD also provides a warning against multiple instances. This warning is disabled by default, If you
want to be warned about multipiebp invocations sharing the same preferences and history files,
enable Edit = Preferences = Warn if Multiple DDD Instances are Running "

This setting is tied to the following resource (seection 3.6 [Customizing], page 0

warnlfLocked (class WarnlfLocked) Resource
Whether to warn if multipleopp instances are runninggh’) or not (‘off ’, default).

2.1.6 X warnings

If you are bothered by X warnings, you can suppress them by seEuhy * = Preferences
= General = Suppress X warnings '

This setting is tied to the following resource (seection 3.6 [Customizing], page 0

suppressWarnings (class SuppressWarnings) Resource
If ‘on’, X warnings are suppressed. This is sometimes useful for executables that were built
on a machine with a different X or M*tif configuration. By default, this af* .

2.2 Quitting DDD

To exitDDD, select File = Exit ’. You may also type thguit command at the debugger
prompt or presgCiri+Q). GDB andxDB also accept theg command or an end-of-file character
(usually Ctri+D)). Closing the lasbpp window will also exitbp.

An interrupt (ESC or ‘Interrupt ') does not exit frompDD, but rather terminates the action
of any debugger command that is in progress and returns to the debugger command level. It is safe
to type the interrupt character at any time because the debugger does not allow it to take effect until
atime when itis safe.

In case an ordinary interrupt does not succeed, you can also use an@bBit(or ‘Abort),
which sends &IGABRTsignal to the inferior debugger. Use this in emergencies only; the inferior
debugger may be left inconsistent or even exit aftSt@ABRT signal.

As a last resort (ibpp hangs, for example), you may also interroptp itself using an interrupt
signal SIGINT). This can be done by typing the interrupt character (usyatiy+C)) in the shell

Chapter 2: Getting In and Out of DDD 29

DDD was started from, or by using thevix ‘kill ' command. An interrupt signal interrupts any

DDD action; the inferior debugger is interrupted as well. Since this interrupt signal can result in
internal inconsistencies, use this as a last resort in emergencies only; save your work as soon as
possible and restattpD.

2.3 Persistent Sessions

If you want to interrupt your currerntbb session, you can save the entire the eniib® state
assession on disk and resume later.

2.3.1 Saving Sessions

To save a session, sele¢tile =- Save Session As . You will be asked for a symbolic
session nameession.

If your program is running (se€hapter 6 [Running], page Rlor if you have opened a core
file (seeSection 4.2.2 [Opening Core Dumps|, page, @bD can also include a core file in the
session such that the debuggee data will be restored when re-opening it. To get a cormfile,
typically mustkill the debuggee. This means that you cannot resume program execution after
saving a session. Depending on your architecture, other options for getting a core file may also be
available.

Including a core dump is necessary for restoring memory contents and the current execution
position. To include a core dump, enablieclude Core Dump .

£2 DDD: Save Session

Sessions
Default session —————tlnonel
catrmands
ctest+dbx
ctest

Saved sessions ———— EEH

Set to save
Prggram Data ————————F Include Core Dump via Kill'in_g the Debugyee

Save Session
| cuntest]

Click to save —W Delete Cancel Help

Saving a Session

After clicking on ‘Save’, the session is saved ir/.ddd/sessions/ session’.
Here’s a list of the items whose state is saved in a session:
e The state of the debugged program, as a coré file.

L Only if a core file is included.

30 Debugging with DDD

e All breakpoints and watchpoints (s@€apter 5 [Stopping], page R1

e All signal settings (se&ection 6.10 [Signals], page 102

e All displays (seesection 7.3 [Displaying Values], page)#7

e All DDD options (seéection 3.6.1.3 [Saving Options], page 61

e All debugger settings (segection 3.6.5 [Debugger Settings]|, pagg.71

e All user-defined buttons (sé&ection 10.4 [Defining Buttons], page)51

e All user-defined commands (s€ection 10.5 [Defining Commands], page .54
e The positions and sizes obp windows.

e The command history (s€&ection 10.1.2 [Command History], page)48

After saving the current state as a session, the session beaormes This means thabpD
state will be saved as session defaults:

e User options will be saved in ~f/.ddd/sessions/ session/init instead of

‘~/.ddd/init '. SeeSection 3.6.1.3 [Saving Options], page fdr details.

e TheDpDD command history will be saved ir-/.ddd/sessions/ session/history ' in-
stead of ~/.ddd/history '. SeeSection 10.1.2 [Command History], page 1f& details.

To make the current session inactive, open dieéault sessiomamed [None] ’. See Sec-
tion 2.3.2 [Resuming Sessions], page féb details on opening sessions.

2.3.2 Resuming Sessions

To resume a previously saved session, seleitd © = Open Session ' and choose a session
name from the list. After clicking onOpen’, the entirepDD state will be restored from the given
session.

The session namefNone] ' is the default session which is active when startingpp. To save
options for default sessions, choose the default session before exiting SeeSection 3.6.1.3
[Saving Options], page 6 for details.

2 If a core file isnot to be included in the sessionpp data displays are saved dsferred that is, they
will be restored as soon as program execution reaches the scope in which they were creatzzt:- See
tion 7.3.1.1 [Creating Single Displays], page 1fof details.

Chapter 2: Getting In and Out of DDD 31

£: DDD: Open Session %]
Sessions
Default session ————fnanel
commands45

ctest+dbx

Saved sessions

Open Session
I cuntest]

Click to open Open | Delete Cancel Help

Opening a Session

If a the restored session includes a core dump, the program being debugged will be in the same
state at the time the session was saved; in particular, you can examine the program data. However,
you will not be able to resume program execution since the process and its environment (open
files, resources, etc.) no longer exist. However, you can restart the program, re-using the restored
breakpoints and data displays.

Opening sessions also restores command definitions, buttons, display shortcuts and the source
tab width. This way, you can maintain a different set of definitions for each session.

You can also specify a session to open when stariing. To invokepDD with a sessioression,
use

ddd --session session

There is also a shortcut that opens the sessisgion and invokes the inferior debugger on an
executable namegtssion (in casesession cannot be opened):

ddd =session

There is no need to give further command-line options when restarting a session, as they will be
overridden by the options saved in the session.

You can also use an X session manager suoctsasto save and restonepn sessions. When
being shut down by a session managerp saves its state under the name specified by the session
manager; resuming the X session make® reload its saved state.

2.3.3 Deleting Sessions

To delete sessions that are no longer needed, sélget ‘= Open Session ’or ‘File =
Save Session . Select the sessions you want to delete and clickizelete

The default sessiorfNone] ’ cannot be deleted.

3 Requires X11R6 or later.

32 Debugging with DDD

2.3.4 Customizing Sessions

You can change the place whep®D saves its sessions by setting the environment variable
DDD_SESSIONSo the name of a directory. Default is/.ddd/sessions/ "

Where applicableppp supports ajcore command to obtain core files of the running program.
You can enter its path vigEdit = Preferences = Helpers = Get Core File . Leave
the value empty if you have rgcore or similar command.

This setting is tied to the following resource (seection 3.6 [Customizing], page 0

getCoreCommand (class GetCoreCommand) Resource
A command to get a core dump of a running process (typicgipre) ‘@FILE@is re-
placed by the base name of the file to crea@PID@is replaced by the process id. The
output must be written ta@FILE@.@PID@

Leave the value empty if you have goore or similar command.

2.4 Remote Debugging

You can have each aipDp, the inferior debugger, and the debugged program run on different
machines.

2.4.1 Running DDD on a Remote Host

You can runbDD on a remote host, using your current host as X display. On the remote host,
invokeDDD as

ddd -display display

wheredisplay is the name of the X server to connect to (for instan&esthame:0.0 ’, where
hostname is your host).

Instead of specifying-tlisplay display’, you can also set thBISPLAY environment variable
to display.

2.4.2 Using DDD with a Remote Inferior Debugger

In order to run the inferior debugger on a remote host, you nesadsh ’ (called ‘rsh ' on BSD
systems) access on the remote host.

To run the debugger on a remote hbsttname, invokebDD as
ddd --host hostname remote-program

If your remoteusername differs from the local username, use

ddd --host hostname --login username remote-program
or

ddd --host username@hostname remote-program
instead.

There are a fewaveatsn remote mode:

Chapter 2: Getting In and Out of DDD 33

e The remote debugger is started in your remote home directory. Hence, you must specify an ab-
solute path name faemote-program (or a path name relative to your remote home directory).
Same applies to remote core files. Also, be sure to specify a remote process id when debugging
a running program.

e The remote debugger is started non-interactively. Somre versions have trouble with this.
If you do not get a prompt from the remote debugger, use-thiedst ' option instead of
‘--host . This will invoke the remote debugger via an interactive shell on the remote host,
which may lead to better results.

Note: using *-rhost ’, DDD invokes the inferior debugger as soon as a shell prompt appears.
The first output on the remote host ending in a space charactet and not followed by a
newline is assumed to be a shell prompt. If necessary, adjust your shell prompt on the remote
host.

e To run the remote progranppD invokes an xterm ’ terminal emulator on the remote
host, giving your currentDISPLAY’ environment variable as address. If the remote host
cannot invoke xterm ’, or does not have access to your X display, stan> with the
‘--no-exec-window ' option. The program input/output will then go through thep
debugger console.

e Inremote mode, all sources are loaded from the remote host; file dialogs scan remote directo-
ries. This may result in somewhat slower operation than normal.

e To help you find problems due to remote execution,spm with the --trace ’ option. This
prints the shell commands issuedibyD on standard error.

SeeSection 2.4.2.1 [Customizing Remote Debugging], pagddiustomizing remote mode.

2.4.2.1 Customizing Remote Debugging

When having the inferior debugger run on a remote host$se¢on 2.4 [Remote Debugging],
page 3), all commands to access the inferior debugger as well as its files must be run remotely.
This is controlled by the following resources (seection 3.6 [Customizing], page 0

rshCommand (class RshCommand) Resource
The remote shell command to invokery-based commands on remote hosts. Usually,
remsh , rsh , ssh, oron.

listCoreCommand (class listCoreCommand) Resource
The command to list all core files on the remote host. The st@iIASK® replaced by a
file filter. The default setting is:

Ddd*listCoreCommand: \
file @MASK@ | grep '.*.*core.* | cut -d: -f1

listDirCommand (class listDirCommand) Resource
The command to list all directories on the remote host. The st@IASK@ replaced by
a file filter. The default setting is:

Ddd*listDirCommand: \
file @MASK@ | grep '.*.*directory.* | cut -d: -f1

34 Debugging with DDD

listExecCommand (class listExecCommand) Resource
The command to list all executable files on the remote host. The s@MASK® replaced
by a file filter. The default setting is:

Ddd*listExecCommand: \

file @MASK@ | grep '.*.*exec.* \
| grep -v .*l*script.* |\
| cut -d: -f1 | grep -v "*\.o%

listSourceCommand (class listSourceCommand) Resource
The command to list all source files on the remote host. The st@JASK®@ replaced by
a file filter. The default setting is:

Ddd*listSourceCommand: \
file @MASK@ | grep '.*.*text.* | cut -d: -f1

2.4.3 Debugging a Remote Program

Thecbs debugger allows you to run tlieebugged prograran a remote machine (calleemote
targed), while GDB runs on the local machine.

Seesection "Remote Debugging” iPebugging with GDB, for details. Basically, the following
steps are required:

e Transfer the executable to the remote target.
e Startgdbserver on the remote target.

e Startppp usingeDB on the local machine, and load the same executable usingkdile
command.

e Attach to the remotegdbserver ’using thecDB targetremote command.

The local ‘gdbinit ' file is useful for setting up directory search paths, etc.

Of course, you can also combip®D remote mode andDB remote mode, runningdD, GDB,
and the debugged program each on a different machine.

2.5 Customizing Interaction with the Inferior Debugger

These settings control the interactionoasp with its inferior debugger.

2.5.1 Invoking an Inferior Debugger

To choose the default inferior debugger, seldetit = Preferences = Startup =
Debugger Type . You can

e haveppD determine the appropriate inferior debugger automatically from its command-line
arguments. SeDetermine Automatically from Arguments "to enable.

e havepDD start the debugger of your choice, as specifiediaebugger Type .

The following bDD resources control the invocation of the inferior debugger sagion 3.6
[Customizing], page 60

Chapter 2: Getting In and Out of DDD 35

autoDebugger (class AutoDebugger) Resource
If this is ‘on’ (default), pDD will attempt to determine the debugger type from its arguments,
possibly overriding thedebugger ’ resource (see below). If this i®ff ', bpD will invoke
the debugger specified by théebugger ' resource regardless ofbD arguments.

debugger (class Debugger) Resource
The type of the inferior debugger to invokeg@b’, ‘dbx’, ‘ladebug ’, ‘xdb’, “jdb ’,
‘pydb’, ‘perl ’, or ‘bash’).
This resource is usually set through thegdb ’, ‘--dbx °’, ‘--ladebug ’, ‘--xdb ’,
‘--jdb ’, *--pydb ’, ‘--perl ’, and ‘--bash ' options; SeeSection 2.1.2 [Options],
page 16for details.

debuggerCommand (class DebuggerCommand) Resource
The name under which the inferior debugger is to be invoked. If this string is empty (default),
the debugger typedebugger ’'resource) is used.

This resource is usually set through thelebugger ' option; SeeSection 2.1.2 [Options],
page 16 for details.

2.5.2 Initializing the Inferior Debugger

DDD uses a number of resources to initialize the inferior debuggerysegon 3.6 [Customiz-
ing], page 6.

2.5.2.1 GDB Initialization

gdblnitCommands (class InitCommands) Resource
This string contains a list of newline-separated commands that are initially sent#o

As a side-effect, all settings specified in this resource are considered fixed and cannot be

changed through thepB settings panel, unless preceded by white space. By default, the
‘gdbInitCommands ’resource contains some settings vitabtob:

Ddd*gdblInitCommands: \

set height 0\n\

set width O\n\

set verbose offin\

set prompt (gdb) \n
While the ‘set height 7, ‘setwidth ’, and ‘set prompt °’ settings are fixed, theset

verbose ' settings can be changed through thes settings panel (although being reset
upon each newDD invocation).

Do not use this resource to customizes; instead, use a personal/:gdbinit "file. See
your ¢DB documentation for details.

gdbSettings (class Settings) Resource

This string contains a list of newline-separated commands that are also initially savto
Its default value is

36 Debugging with DDD

Ddd*gdbSettings: \
set print asm-demangle on\n

This resource is used to save and restore the debugger settings.

sourcelnitCommands (class SourcelnitCommands) Resource
If “on’ (default), DDD writes allcDB initialization commands into a temporary file and makes

GDB read this file, rather than sending each initialization command separately. This results in

faster startup (especially if you have several user-defined commandsif. If ‘DDD makes
GDB process each command separately.

2.5.2.2 DBX Initialization

dbxInitCommands (class InitCommands) Resource
This string contains a list of newline-separated commands that are initially sepixtoBy
default, it is empty.
Do not use this resource to customizex; instead, use a personat/:dbxinit " or
‘~/.dbxrc ’file. See yournBx documentation for details.

dbxSettings (class Settings) Resource
This string contains a list of newline-separated commands that are also initially et to
By default, it is empty.

2.5.2.3 XDB Initialization

xdblInitCommands (class InitCommands) Resource
This string contains a list of newline-separated commands that are initially senitoBy
default, it is empty.
Do not use this resource to customizex; instead, use a personal/:xdbrc '’ file. See
your xDB documentation for details.

xdbSettings (class Settings) Resource
This string contains a list of newline-separated commands that are also initially sav.to
By default, it is empty.

2.5.2.4 JDB Initialization

jdbInitCommands (class InitCommands) Resource
This string contains a list of newline-separated commands that are initially sem td his
resource may be used to customipass. By default, it is empty.

jdbSettings (class Settings) Resource
This string contains a list of newline-separated commands that are also initially sem.to
By default, it is empty.
This resource is used hypD to save and restormB settings.

Chapter 2: Getting In and Out of DDD 37

2.5.2.5 PYDB Initialization

pydbinitCommands (class InitCommands) Resource
This string contains a list of newline-separated commands that are initially senbta By
default, it is empty.

This resource may be used to custonezaB.

pydbSettings (class Settings) Resource
This string contains a list of newline-separated commands that are also initially semito
By default, it is empty.

This resource is used hypD to save and restoreyDB settings.

2.5.2.6 Perl Initialization

perlinitCommands (class InitCommands) Resource
This string contains a list of newline-separated commands that are initially sent to the Perl
debugger. By default, it is empty.

This resource may be used to customize the Perl debugger.

perlSettings (class Settings) Resource
This string contains a list of newline-separated commands that are also initially sent to the
Perl debugger. By default, it is empty.

This resource is used hypp to save and restore Perl debugger settings.

2.5.2.7 Bash Initialization

bashlnitCommands (class InitCommands) Resource
This string contains a list of newline-separated commands that are initially sent to the Bash
debugger. By default, it is empty.

This resource may be used to customize the Bash debugger.

bash (class Settings) Resource
This string contains a list of newline-separated commands that are also initially sent to the
Perl debugger. By default, it is empty.

This resource is used hypD to save and restore Bash debugger settings.

2.5.2.8 Finding a Place to Start

initSymbols (class InitSymbols) Resource
When loading an executableypp queries the inferior debugger for the initial source
location—typically themain function. If this location is not foundypp tries other symbols
from this newline-separated list. The default value mabkes look for a variety of main
functions (especially FORTRAN main functions):

38 Debugging with DDD

main\n\
MAIN\n\
main_\n\
MAIN_\n\
main__\n\
MAIN__\n\
__main\n\
_MAIN\n\
__main\n\
__MAIN

2.5.2.9 Opening the Selection

openSelection(class OpenSelection) Resource
If this is ‘on’, pDD invoked without argument checks whether the current selection or clip-
board contains the file name or URL of an executable program. If this istso will auto-
matically open this program for debugging. If this resourcefs “ (default), bpD invoked
without arguments will always start without a debugged program.

2.5.3 Communication with the Inferior Debugger

The following resources control the communication with the inferior debugger.

blockTTYInput (class BlockTTYInput) Resource
Whetherppb should block when reading data from the inferior debugger via the pseudo-tty
interface. MostUNIX systems exceptNU/Linux requirethis; set it to bn’. On aNU/Linux,
set it to ‘off '. The value auto ’ (default) will always select the “best” choice (that is, the
best choice known to thepp developers).

bufferGDBOutput (class BufferGDBOutput) Resource
If this is ‘on’, all output from the inferior debugger is buffered until a debugger prompt ap-
pears. This makes it easier fopD to parse the output, but has the drawback that interaction
with a running debuggee in the debugger console is not possibleff If, output is shown
as soon as it arrives, enabling interaction, but making it hardapiior to parse the output.
If “auto ' (default), output is buffered if and only if the execution window is open, which
redirects debuggee output and thus enables interactiorséSgien 6.2 [Using the Execution
Window], page 93for details.

continterruptDelay (class InterruptDelay) Resource
The time (in ms) to wait before automatically interruptingcant ' command.ppD cannot
interrupt a tont * command immediately, because this may disturb the status change of the
process. Default i200.

displayTimeout (class DisplayTimeout) Resource
The time (in ms) to wait for the inferior debugger to finish a partial display information.
Default is2000.

Chapter 2: Getting In and Out of DDD 39

positionTimeout (class PositionTimeout) Resource
The time (in ms) to wait for the inferior debugger to finish a partial position information.
Default is500.

guestionTimeout (class QuestionTimeout) Resource
The time (in seconds) to wait for the inferior debugger to reply. Defadl®is

runinterruptDelay (class InterruptDelay) Resource
The time (in ms) to wait before automatically interruptingran’ * command. DDD cannot
interrupt a tont ' command immediately, because this may disturb process creation. Default
is2000.

stopAndContinue (class StopAndContinue) Resource
If “on’ (default), debugger commands interrupt program execution, resuming execution after
the command has completed. This only happens if the last debugger command was either a
‘run 'ora‘continue ’'command. If off ’, debugger commands do not interrupt program
execution.

synchronousDebugger(class SynchronousDebugger) Resource
If ‘on’, X events are not processed while the debugger is busy. This may result in slightly
better performance on single-processor systems.S8egon 2.1.2 [Options], page 1for
the --sync-debugger ' option.

terminateONEOF (class TerminateOnEOF) Resource
If “on’, pDD terminates the inferior debugger whepp detects an EOF condition (that is,
as soon as the inferior debugger closes its output channel). This was the default behavior in
pDD 2.X and earlier. Ifoff ’ (default), DDD takes no special action.

useTTYCommand (class UseTTYCommand) Resource
If ‘on’, use thecpB tty command for redirecting input/output to the separate execution
window. If ‘off ’, use explicit redirection through shell redirection operater'saind >'.
The default is 6ff ’ (explicit redirection), since on some systems, ttye command does
not work properly on somebpB versions.

40

Debugging with DDD

Chapter 3: The DDD Windows 41

3 The DDD Windows

DDD is composed of three main windows. From top to bottom, we have:

e TheData Window shows the current data of the debugged program.S8e&on 7.3 [Display-
ing Values], page 1Q7or detalils.

e The Source Window shows the current source code of the debugged programCiSsger 4
[Navigating], page 73for details.

e TheDebugger Console accepts debugger commands and shows debugger messagesaSee
ter 10 [Commands], page 14for details.

22 DDD: lusriusersists1/zellerfdddfdddicxxtest.C [_ IO x]
Menu Bar ——>Ale Edit View Program Commands Status Source Data Help
e | Tist— W i 3 i e if 7 T 5 #
Tool Bar—ffll istoreonexcone: [FERESENENGEINEN E
2: *list X : *list->next N A
. value = 85 value = 86
(List *) 0x804ab78| self = 0x804ab7s self = 0xB804ab@s
Data WlndOW r next = 0x804ab88] next = 0xB04ab3s|f Panner
44 Simple circular Tist. Ewamine “1ist” with alias detection enabled psg
wold Tist_test{int start)
Run
ist ®1ist = 0;
List #list = 0; interrupt
Tist = new List({a_global + start+);
Tist-snext = nen List{a_global + start+) ST
Tist—rnext—>next = new List(a_global + start+); Hext | Mexti
Tist—rnext—rnext->next = list; =
4 delete 1ist-snext—>next; i | Command TOOI
delete 1ist-snext; ot obe
. delete 1ist; Up | Down
. Back | Fwd
Source WindOW —/ Test disanbiquation +— Scroll Bar
Uoid Tist_testidooble d) Eait | aba |
Tist_testlintld)l;
A .
. ‘ #1— Resize Sash
. . 0x8048a27 <list_test__Fi+1515: mov] OxFFFFFFFc(%ebn) . %eax
Machine Code Window — 1= xitdgaza <list_test_Fi+i54:: movl Ox8(%eax) ,¥eds =
04ab?8 (1343237 [
(gdb) graph display *1ist dependent on 1 Value Tlp
(gdb) graph display *(list->next) dependent on 2
{gdb) graph display *(list->next—>next) dependent on 3
Debugger Conso|e 74(«3%% graph display *(1ist—>next—next—>next) dependent on 4 -
3 i
A
Status Line — s~ n804ab78 (134523768 = Busy Indicator

The DDD Layout using Stacked Windows

Besides these three main windows, there are some other optional windows:

e The Command Tool offers buttons for frequently used commands. It is usually placed on the
source window. Se8ection 3.3 [Command Tool], page,F6r detalils.

e The Machine Code Window shows the current machine code. It is usually placed beneath the
current source. Seeection 8.1 [Machine Code], page 144r details.

e TheExecution Window shows the input and output of the debugged program.S8e&on 6.2
[Using the Execution Window], page 9for details.

3.1 The Menu Bar

TheDbppb Menu Bar gives you access to albp functions.

File Perform file-related operations such as selecting programs, processes, and sessions,
printing graphs, recompiling, as well as exitingb.

42 Debugging with DDD

Edit Perform standard editing operations, such as cutting, copying, pasting, and killing
selected text. Also allows editingbp options and preferences.

View Allows accessing the individualpp windows.

Program Perform operations related to the program being debugged, such as starting and stop-
ping the program.

Commands
Perform operations related tmb commands, such as accessing the command history
or defining new commands.

Status Examine the program status, such as the stack traces, registers, or threads.
Source Perform source-related operations such as looking up items or editing breakpoints.
Data Perform data-related operations such as editing displays or layouting the display graph.

Maintenance
Perform operations that are useful for debuggimgp. By default, this menu is dis-
abled.

Help Give help onbDD usage.

There are two ways of selecting an item from a pull-down menu:

e Select an item in the menu bar by moving the cursor over it and aticlgse button.1Then
move the cursor over the menu item you want to choose and click left again.

e Select an item in the menu bar by moving the cursor over it and click anchinmlde button.1
With the mouse button depressed, move the cursor over the menu item you want, then release
it to make your selection.

The menus can also liern off (i.e. turned into a persistent window) by selecting the dashed
line at the top.

If a command in the pull-down menu is not applicable in a given situation, the command is
disabled and its name appears faded. You cannot invoke items that are faded. For example, many
commands on theEdit ' menu appear faded until you select text on which they are to operate;
after you select a block of text, edit commands are enabled.

3.1.1 The File Menu

The ‘File ' menu contains file-related operations such as selecting programs, processes, and
sessions, printing graphs, recompiling, as well as exiting.

Open Program

Open Class
Open a program or class to be debugg@iiFrO)). SeeSection 4.2.1 [Opening Pro-
grams], page 7,3or details.

Open Recent
Re-open a recently opened program to be debuggedsSSaen 4.2.1 [Opening Pro-
grams], page 7,Jor detalils.

Open Core Dump
Open a core dump for the currently debugged program. S8e¢on 4.2.2 [Opening
Core Dumps], page 74or details.

Chapter 3: The DDD Windows 43

Open Source
Open a source file of the currently debugged program. SSeion 4.2.3 [Opening
Source Files], page 74or detalils.

Open Session
Resume a previously savedD session {CirT+N)). SeeSection 2.3.2 [Resuming Ses-
sions], page 3(for details.

Save Session As
Save the currenbpp session such that you can resume it latE€irFS). SeeSec-
tion 2.3.1 [Saving Sessions], page, #&r details.

Attach to Process
Attach to a running process of the debugged program.S8&eé&on 6.3 [Attaching to a
Process], page 9for details.

Detach Process
Detach from the running process. Seection 6.3 [Attaching to a Process], pagg 94
for details.

Print Graph
Print the current graph on a printer. Seection 7.3.7 [Printing the Graph], page 131
for details.

Change Directory
Change the working directory of your program. Seection 6.1.3 [Working Direc-
tory], page 92for details.

Make Run themake program (Cirl+#M)). SeeSection 9.2 [Recompiling], page 14for
details.

Close Close thisbpp window ([CtrT¥W)). SeeSection 2.2 [Quitting], page 2for details.
Restart Restartopp.
Exit Exit ppD (CHMFQ). SeeSection 2.2 [Quitting], page 2for details.

3.1.2 The Edit Menu

The ‘Edit ’ menu contains standard editing operations, such as cutting, copying, pasting, and
killing selected text. Also allows editingpp options and preferences.

Undo Undo the most recent actioCfri+2)). Almost all commands can be undone this way.
SeeSection 3.5 [Undo and Redo], page, for details.

Redo Redo the action most recently undon€t{+Y)). Every command undone can be
redone this way. Se®gection 3.5 [Undo and Redo], page, far details.

Cut Removes the selected text block from the current text area and makes it the X clipboard
selection (CtT+X) or ShiftfDel); SeeSection 3.1.11.2 [Customizing the Edit Menul],
page 51for details). Before executing this command, you have to select a region in a
text area—either with the mouse or with the usual text selection keys.
This item can also be applied to displays (S&ection 7.3.1.12 [Deleting Displays],
page 115

44

Copy

Paste

Clear
Delete

Select All

Debugging with DDD

Makes a selected text block the X clipboard selecti@rkrC) or Cirl+Ins); SeeSec-

tion 3.1.11.2 [Customizing the Edit Menu], page, fdr details). You can select text

by selecting a text region with the usual text selection keys or with the mouse. See
Section 3.1.11.2 [Customizing the Edit Menu], page fot changing the default ac-
celerator.

This item can also be applied to displays (S&ection 7.3.1.12 [Deleting Displays],
page 115

Inserts the current value of the X clipboard selection in the most recently selected
text area (CirI+V) or (ShiftfIng); SeeSection 3.1.11.2 [Customizing the Edit Menu],
page 5] for details). You can paste in text you have placed in the clipboard using
‘Copy’ or ‘Cut’. You can also usePaste ' to insert text that was pasted into the
clipboard from other applications.

Clears the most recently selected text ak€alrU)).

Removes the selected text block from the most recently selected text area, but does not
make it the X clipboard selection.

This item can also be applied to displays (Seection 7.3.1.12 [Deleting Displays],

page 11§

Selects all characters from the most recently selected text #&@e&FA) or or

({CIT+ShiftfA); see Section 3.1.11.2 [Customizing the Edit Menu], page %dr
details).

Preferences

Allows you to customizepDD interactively. Seéection 3.6 [Customizing], page 60
for details.

Debugger Settings

Allows you to customize the inferior debugger. Seection 3.6.5 [Debugger Settings],
page 71for details.

Save Options

If set, all preferences and settings will be saved for the mexb invocation. See
Section 3.6.1.3 [Saving Options], page €dr details.

3.1.3 The View Menu

The ‘View ' menu allows accessing the individuabp windows.

Command Tool

Open and recenter the command to@liFr8)). SeeSection 3.3 [Command Tool],
page 55for details.

Execution Window

Open the separate execution windoi+9)). SeeSection 6.2 [Using the Execution
Window], page 93for details.

Debugger Console

Open the debugger consol@if+1)). SeeChapter 10 [Commands], page 14or
details.

Chapter 3: The DDD Windows 45

Source Window
Open the source windowA[t+2). SeeChapter 4 [Navigating], page /for details.

Data Window

Open the data windowAIlt+3)). SeeSection 7.3 [Displaying Values], page 1,dor
details.

Machine Code Window
Show machine codeAlt+4)). SeeSection 8.1 [Machine Code], page 14ar details.

3.1.4 The Program Menu

The ‘Program ' menu performs operations related to the program being debugged, such as
starting and stopping the program.

Most of these operations are also found on the command toobseien 3.3 [Command Tool],
page 5%.
Run Start program execution, prompting for program argumef#®)(SeeSection 6.1
[Starting Program Execution], page,9ar details.
Run Again
Start program execution with the most recently used argum@&rgs. (SeeSection 6.1
[Starting Program Execution], page,3ar details.

Run in Execution Window
If enabled, start next program execution in separate execution windoveSeen 6.2
[Using the Execution Window], page 9for details.

Step Continue running your program until control reaches a different source line, then stop
it and return control topD (FH). SeeSection 6.5 [Resuming Execution], page 96
for details.

Step Instruction
Execute one machine instruction, then stop and retunio (ShifttF5). SeeSec-
tion 8.2 [Machine Code Execution], page 14@r details.

Next Continue to the next source line in the current (innermost) stack fr&m8ae. (This is
similar to ‘Step ’, but function calls that appear within the line of code are executed
without stopping. Se&ection 6.5 [Resuming Execution], page far details.

Next Instruction
Execute one machine instruction, but if it is a function call, proceed until the function
returns (ShifttF6). SeeSection 8.2 [Machine Code Execution], page ,Jf6? details.

Until Continue running until a source line past the current line, in the current stack frame, is
reached 7). SeeSection 6.5 [Resuming Execution], page fdr details.

Finish Continue running until just after function in the selected stack frame ret@8g. (
Print the returned value (if any). S&€ection 6.5 [Resuming Execution], page far
details.

Continue

Resume program execution, at the address where your program last st@@edriy
breakpoints set at that address are bypassedS&e@n 6.5 [Resuming Execution],
page 96 for details.

46 Debugging with DDD

Continue Without Signal
Continue execution without giving a sign@hiftFF9). This is useful when your pro-
gram stopped on account of a signal and would ordinary see the signal when resumed
with ‘Continue '. SeeSection 6.10 [Signals], page 1,d@r details.

Kill Kill the process of the debugged prograff4(). SeeSection 6.11 [Killing the Pro-
gram], page 104for details.

Interrupt
Interrupt program execution§s¢ or (Ctri+C); seeSection 3.1.11.2 [Customizing the
Edit Menu], page 5]1for details). This is equivalent to sending an interrupt signal to
the process. Segection 5.3 [Interrupting], page 3for details.

Abort Abort program execution (and maybe debugger execution{@®t\)). This is equiv-
alent to sending 8l GABRTsignal to the process. S&ection 2.2 [Quitting], page 28
for detalils.

3.1.5 The Commands Menu

The ‘Commands menu performs operations relatedii@op commands, such as accessing the
command history or defining new commands.

Most of these items are not meant to be actually executed via the menu; instead, they serve as
reminderfor the equivalent keyboard commands.

Command History
View the command history. Segection 10.1.2 [Command History], page 146r

details.

Previous
Show the previous command from the command histdig)]. SeeSection 10.1.2
[Command History], page 14for details.

Next Show the next command from the command histgBo@n). SeeSection 10.1.2

[Command History], page 14for details.

Find Backward
Do an incremental search backward through the command higG@ir#B)). SeeSec-
tion 10.1.2 [Command History], page 148r details.

Find Forward
Do an incremental search forward through the command histGg%P)). SeeSec-
tion 10.1.2 [Command History], page 148r details.

Quit Search
Quit incremental search through the command histdEgd). SeeSection 10.1.2
[Command History], page 14§or detalils.

Complete
Complete the current command in the debugger consoé®). SeeSection 10.1
[Entering Commands], page 14fr details.

Apply Apply the current command in the debugger cons@edly)). SeeSection 10.1 [En-

tering Commands], page 14for details.

Chapter 3: The DDD Windows 47

Clear Line
Clear the current command line in the debugger constiEtU)). SeeSection 10.1
[Entering Commands], page 14for details.

Clear Window
Clear the debugger consol@kiftrCirI+U)). SeeSection 10.1 [Entering Commands],
page 147for details.

Define Command
Define a new debugger command. Seestion 10.5 [Defining Commands], page 154
for detalils.

Edit Buttons
Customizeppp buttons. Se&ection 10.4 [Defining Buttons], page 13ar detalils.

3.1.6 The Status Menu

The ‘Status ' menu lets you examine the program status, such as the stack traces, registers, or
threads.

Backtrace
View the current backtrace. S&€ection 6.7.2 [Backtraces]|, page, $6r a discussion.

Registers
View the current register contents. Seection 8.3 [Registers], page 14@r details.

Threads View the current threads. Sée=ction 6.9 [Threads], page 1,dar details.
Signals View and edit the current signal handling. Seection 6.10 [Signals], page 10ér

details.
Up Select the stack frame (i.e. the function) that called this @@+{Up)). This advances

toward the outermost frame, to higher frame numbers, to frames that have existed
longer. Seésection 6.7 [Stack], page 9for details.

Down Select the stack frame (i.e. the function) that was called by this @ig+HDown)).
This advances toward the innermost frame, to lower frame numbers, to frames that
were created more recently. S8ection 6.7 [Stack], page 9fbr details.

3.1.7 The Source Menu

The ‘Source ' menu performs source-related operations such as looking up items or editing
breakpoints.

Breakpoints
Edit all Breakpoints. SeBection 5.1.11 [Editing all Breakpoints], page fiar details.

Lookup ()
Look up the argument} ' in the source code(Cir+/)). SeeSection 4.3.1 [Looking
up Definitions], page 75or details.

Find >> ()
Look up the next occurrence of the argumdint*in the current source cod&IirT+.)).
SeeSection 4.3.2 [Textual Search], page far details.

48 Debugging with DDD

Find << ()
Look up the previous occurrence of the argumdint’‘in the current source code
((CrT+y). SeeSection 4.3.2 [Textual Search], page far details.

Find Words Only
If enabled, find only complete wordgAli+W)). SeeSection 4.3.2 [Textual Search],
page 76for details.

Find Case Sensitive
If enabled, find is case-sensitiv@if+1)). SeeSection 4.3.2 [Textual Search], pagg 76
for detalils.

Display Line Numbers
If enabled, prefix source lines with their line numb&i{+N)). SeeSection 4.4 [Cus-
tomizing Source], page 7Tor details.

Display Machine Code
If enabled, show machine cod@if+4)). SeeSection 8.1 [Machine Code], page 141
for details.

Edit Source
Invoke an editor for the current source filSHif+CirI+V)). SeeSection 9.1 [Editing
Source Code], page 14for details.

Reload Source
Reload the current source fil&hiftFCIrT+L)). SeeSection 9.1 [Editing Source Code],
page 145for details.

3.1.8 The Data Menu

The ‘Data’ menu performs data-related operations such as editing displays or layouting the
display graph.

Displays
Invoke the Display Editor. Se®ection 7.3.1.11 [Editing all Displays], page 116ér
details.

Watchpoints
Edit all Watchpoints. SeBection 5.2.3 [Editing all Watchpoints], page, #ar details.

Memory View a memory dump. Segection 7.5 [Examining Memory], page 1,36r detalils.

Print () Print the value of () " in the debugger consoleGir+=)). SeeSection 7.2 [Printing
Values], page 106or detalils.

Display ()
Display the value of() ' in the data window (Cirl+-)). SeeSection 7.3 [Displaying
Values], page 10 7for details.

Detect Aliases
If enabled, detect shared data structufB&{A)). SeeSection 7.3.4.3 [Shared Struc-
tures], page 121for a discussion.

Chapter 3: The DDD Windows 49

Display Local Variables
Show all local variables in a display{t+L)). SeeSection 7.3.1.5 [Displaying Local
Variables], page 11¥or details.

Display Arguments
Show all arguments of the current function in a displ@ft#U)). SeeSection 7.3.1.5
[Displaying Local Variables], page 11lfor details.

Status Displays
Show current debugging information in a display. Se&ection 7.3.1.6 [Displaying
Program Status], page 11for details.

Align on Grid
Align all displays on the grid Bf+G)). SeeSection 7.3.6.3 [Aligning Displays],
page 130for a discussion.

Rotate Graph
Rotate the graph by 90 degre€8{+R)). SeeSection 7.3.6.5 [Rotating the Graph],
page 13]1for details.

Layout Graph
Layout the graph@[t+Y)). SeeSection 7.3.6 [Layouting the Graph], page 1f&r
details.

Refresh Update all values in the data windoC{r+L)). SeeSection 7.3.1.7 [Refreshing the
Data Window], page 113or details.

3.1.9 The Maintenance Menu

The ‘Maintenance ' menu performs operations that are useful for debugging.

By default, this menu is disabled; it is enabled by specifically requestingbibatinvocation
(via the --maintenance ' option; seeSection 2.1.2 [Options], page LAt is also enabled when
DDD gets a fatal signal.

Debug pDD
Invoke a debugger (typically;pB) and attach it to thi®DD process EI2). This is
useful only if you are abpp maintainer.

Dump Core Now
Make thisppp process dump core. This can also be achieved by sengimga
SIGUSR1signal.

Tic Tac Toe
Invoke a Tic Tac Toe game. You must try to get three stop signs in a row, while
preventingppp from doing so with its skulls. Click onrNew Gameéto restart.

WhenpDD Crashes
Select what to do whenpb gets a fatal signal.

Debug pDD
Invoke a debugger on thepp core dump whembDD crashes. This is
useful only if you are app maintainer.

50 Debugging with DDD

Dump Core
Just dump core whenpD crashes; don't invoke a debugger. This is
the default setting, as the core dump may contain important information
required for debuggingpD.

Do Nothing
Do not dump core or invoke a debugger wharb crashes.

Remove Menu
Make this menu inaccessible again.

3.1.10 The Help Menu

The ‘Help ' menu gives help omDD usage. Se&ection 3.4 [Getting Help], page Hfor a
discussion on how to get help withirbp.

Overview
Explains the most important conceptsmaip help.

On Item Lets you click on an item to get help on it.

On Window
Gives you help on thispp window.

What Now?
Gives a hint on what to do next.

Tip of the Day
Shows the current tip of the day.

DDD Reference
Shows theobp Manual.

pDD News Shows what's new in thisDD release.

Debugger Reference
Shows the on-line documentation for the inferior debugger.

DDD License
Shows the>DpD License (seé\ppendix G [License], page 137

DDD WWW Page
Invokes awww browser for theobD www page.

About DDD
Shows version and copyright information.

3.1.11 Customizing the Menu Bar

The Menu Bar can be customized in various ways segion 3.6 [Customizing], page 0

Chapter 3: The DDD Windows 51

3.1.11.1 Auto-Raise Menus

You can cause pull-down menus to be raised automatically.

autoRaiseMenu (class AutoRaiseMenu) Resource
If * on’ (default), ppD will always keep the pull down menu on top of thep main window.
If this setting interferes with your window manager, or if your window manager does not
auto-raise windows, set this resourcedé * .

autoRaiseMenuDelay (class AutoRaiseMenuDelay) Resource
The time (in ms) during which an initial auto-raised window blocks further auto-raises. This
is done to prevent two overlapping auto-raised windows from enterirgugsiraise loop
Default is100.

3.1.11.2 Customizing the Edit Menu

In the Menu Bar, the Edit * Menu can be customized in various ways. Ugait =
Preferences = Startup ’to customize these keys.

The (CirT+C) key can be bound to different actions, each in accordance with a specific style guide.

Copy This setting bindgCtrI+C) to the Copy operation, as specified by the KDE style guide.
In this setting, us€ESC to interrupt the debuggee.

Interrupt

This (default) setting bind&trT+C) to the Interrupt operation, as used in severaix command-
line programs. In this setting, Ugetri+ins to copy text to the clipboard.

The Cirl+A) key can be bound to different actions, too.

Select All
This (default) setting bind&irT+A) to the ‘Select All ' operation, as specified by
the KDE style guide. In this setting, uggome to move the cursor to the beginning of
aline.

Beginning of Line
This setting bindgCirI+A) to the ‘Beginning of Line ' operation, as used in sev-
eral UNIX text-editing programs. In this setting, USEIMFShiftFA) to select all text.

Here are the relatenbD resources:

cutCopyPasteBindings(class BindingStyle) Resource
Controls the key bindings for clipboard operations.

e If thisis ‘Motif ' (default), Cut/Copy/Paste is oBhifttDel)/(Cirl+Ins)/ShifttIns. This
is conformant to the M*tif style guide.

e If this is ‘KDE, Cut/Copy/Paste is ofCirI+X)/({CtrI+C)/({CtrT+V). This is conformant
to the KDE style guide. Note that this means tif@iT+C) no longer interrupts the
debuggee; us@&SQC instead.

52

se

Debugging with DDD

lectAllIBindings (class BindingStyle) Resource
Controls the key bindings for th&elect All -’ operation.

e Ifthisis ‘Motif ', Select All is onShift+Cir+A).

e |[f this is ‘KDE (default), Select All is onCir+A). This is conformant to the KDE style
guide. Note that this means th@ir+A) no longer moves the cursor to the beginning of
a line; useHome instead.

3.2 The Tool Bar

SomepDD commands require aargument This argument is specified in tleegument field

labeled (): . Basically, there are four ways to set arguments:

firs

You cankey inthe argument manually.

You canpastethe current selection into the argument field (typically usimguse button
2). To clear old contents beforehand, click on tfe *’ label.

You canselect an itenfrom the source and data windows. This will automatically copy the
item to the argument field.

You can select areviously used argumeifriom the drop-down menu at the right of the argu-
ment field.

Using GbB and Perl, the argument field provides a completion mechanism. You can enter the
t few characters of an item an press {h&@B) key to complete it. Pressin@AB) again shows

alternative completions.

After having entered an argument, you can select one of the buttons on the right. Most of these

buttons also have menus associated with them; this is indicated by a small arrow in the upper right
corner. Pressing and holdingouse button bn such a button will pop up a menu with further

operations.
Enter Argument Get Previous Arguments
'.::':Iarral""E ¢ E‘ L?tlaéup /F;%; Bﬁk‘r u%:jhv P:%WT\D%a;\Ef}L(R-:?i; ;‘g /Un%n
Lookup Commands Breakpoint Commands Data Commands
The Tool Bar

cur

These are the buttons of the tool bar. Note that not all buttons may be inactive, depending on the
rent state and the capabilities of the inferior debugger.

Lookup

Fin

Look up the argumen{) ’in the source code. Segection 4.3.1 [Looking up Defini-
tions], page 75for details.

d>>

Chapter 3: The DDD Windows 53

Break/Clear

Look up the next occurrence of the argumef)t * in the current source code. See
Section 4.3.2 [Textual Search], page fd@ details.

Toggle a breakpoint (segection 5.1 [Breakpoints], page)3t the location() .

Break If there is no breakpoint at(} ’, then this button is labeledBreak .
Clicking on ‘Break ' sets a breakpoint at the locatiof) *’. See Sec-
tion 5.1.1 [Setting Breakpoints], page,3ar details.

Clear If there already is a breakpoint af) ‘', then this button is labeled
‘Clear . Clicking on ‘Clear ' clears (deletes) the breakpoint at the
location () . SeeSection 5.1.2 [Deleting Breakpoints], page, &@r
details.

Watch/Unwatch

Print

Display

Plot

Show/Hide

Rotate

Set

Undisp

Toggle a watchpoint (seeection 5.2 [Watchpoints], page)3dh the expression(} .

Watch If () "is not being watched, then this button is label®ddtch’. Click-
ing on ‘Watch’ creates a watchpoint on the expressign”. SeeSec-
tion 5.2.1 [Setting Watchpoints], page,86r details.

Unwatch If*() ’is being watched, then this button is label&thwvatch *. Clicking
on ‘Unwatch ’ clears (deletes) the watchpoint df) . SeeSection 5.2.4
[Deleting Watchpoints], page 8for details.

Print the value of () ' in the debugger console. Sé&ction 7.2 [Printing Values],
page 106for details.

Display the value of() ’ in the data window. Seé&ection 7.3 [Displaying Values],
page 107for details.

Plot ‘() ’in a plot window. Se§ion 7.4 [Plotting Values], page 1,38r details.

Toggle details of the selected display(s). Seetion 7.3.1.3 [Showing and Hiding
Details], page 105or a discussion.

Rotate the selected display(s). Sgection 7.3.1.4 [Rotating Displays], page 1fa@r
details.

Set (change) the value df)‘ . SeeSection 7.3.3 [Assignment], page 1 16r details.

Undisplay (delete) the selected display(s). Seetion 7.3.1.12 [Deleting Displays],
page 116for details.

54 Debugging with DDD

3.2.1 Customizing the Tool Bar

The ppp tool bar buttons can appear in a variety of styles, customized Kiit * =
Preferences = Startup .

Images This lets each tool bar button show an image illustrating the action.

Captions
This shows the action name below the image.

The default is to have images as well as captions, but you can choose to have only images (saving
space) or only captions.

No captions, no images

(: [fnaiin 7 Lookup ()| Find>> (7| Breakat (J| Watch () 7| Print (J| Display (}'||

Captions, images, flat, color

0z | ain Y B @ @ R ooa T W o R ﬁvl

Lookup Finds: EBreak Llatch Print Display Plot Shiowl - Botate Set URdisgr

Captions only, non-flat

{): |inain o L-:u:-kupl Fin-:l»vl Breakvl Watch Prin'rvl Displa;l Plntvl 5h-:-w7| Fotate| | set | undizo
Images only, flat

— = = = = . = - =
0 [inain 1o MO F Tasadse |

Tool Bar Appearance

If you choose to have neither images nor captions, tool bar buttons are labeled like other buttons,
as inppD 2.X. Note that this implies that in the stacked window configuration, the common tool bar
cannot be displayed; it is replaced by two separate tool bars,rasnrR.x.

If you enable Flat ' buttons (default), the border of tool bar buttons will appear only if the
mouse pointer is over them. This latest-and-greatestinvention can be disabled, such that the
button border is always shown.

If you enable Color ’ buttons, tool bar images will be colored when enterehib was built
using M*tif 2.0 and later, you can also choose a third setting, where buttons appear in color all the
time.

Here are the related resources (Seetion 3.6 [Customizing], page 0

activeButtonColorKey (class ColorKey) Resource
The xpMm color key to use for the images of active buttons (entered or armed)neans
color, ‘g’ (default) means grey, anari means monochrome.

Chapter 3: The DDD Windows 55

buttonCaptions (class ButtonCaptions) Resource
Whether the tool bar buttons should be shown using captiams, (default) or not (off °).
If neither captions nor images are enabled, tool bar buttons are shown using ordinary labels.
See alsobuttonimages ', below.

buttonCaptionGeometry (class ButtonCaptionGeometry) Resource
The geometry of the caption subimage within the button icons. Defa@®is/+0-0 .

buttonimages (class Buttonimages) Resource
Whether the tool bar buttons should be shown using images, (efault) or not (off).
If neither captions nor images are enabled, tool bar buttons are shown using ordinary labels.
See alsobuttonCaptions ', above.

buttonimageGeometry (class ButtonimageGeometry) Resource
The geometry of the image within the button icon. Defaul2sX21+2+0 .

buttonColorKey (class ColorKey) Resource
ThexpwM color key to use for the images of inactive buttons (non-entered or insensitive). *
means color,g’ (default) means grey, andri means monochrome.

flatToolbarButtons (class FlatButtons) Resource
If ‘on’ (default), all tool bar buttons with images or captions are given a ‘flat’ appearance—
the 3-D border only shows up when the pointer is over the icoroftf °, the 3-D border is
shown all the time.

flatDialogButtons (class FlatButtons) Resource
If “on’ (default), all dialog buttons with images or captions are given a ‘flat’ appearance—
the 3-D border only shows up when the pointer is over the icoroftf °, the 3-D border is
shown all the time.

3.3 The Command Tool

The command tool is a small window that gives you access to the most frequentlyposed
commands. It can be moved around on top ofmie windows, but it can also be placed besides
them.

By default, the command tosticksto theppp source window: Whenever you move thep
source window, the command tool follows such that the distance between source window and com-
mand tool remains the same. By default, the command tool issafseraised such that it stays on
top of otherbDD windows.

The command tool can be configured to appear as a command tool bar above the source window;
see Edit = Preferences = Source = Tool Buttons Location ' for details.

Whenever you saveDD state,DDD also saves the distance between command tool and source
window, such that you can select your own individual command tool placement. To move the
command tool to its saved position, us8eéw = Command Tool'.

56

Debugging with DDD

Start debugged program Hu“
Interrupt debugged program I“t'E"“FtE ;
Step program one line (step into calls) Step | Stepi Step one instruction (step into calls)
Step program one line (step over calls) Mext | Mexti Step one instruction (step over calls)
Continue until program reaches next line |__|-r'|"|;'i| Flnlsh Continue until frame returns

Continue program after breakpoint |:|:||-Tt kill Kill execution of debugged program

Select stack frame that called this one g Doy Select stack frame called by this one
Undo previous action Undo | Redo Redo next action
Edit source file -E.!j-lf Flake Invoke the make program

The Command Tool

These are the buttons of the command tool. Note that not all buttons may be inactive, depending
on the current state and the capabilities of the inferior debugger.

Run

Interrupt

Step

Stepi

Next

Nexti

Until

Finish

Start program execution. When you click this button, your program will begin to exe-
cute immediately. SeBection 6.1 [Starting Program Execution], pagefet details.

Interrupt program execution. This is equivalent to sending an interrupt signal to the
process. SeBection 5.3 [Interrupting], page Sfor details.

Continue running your program until control reaches a different source line, then stop
it and return control tmbpDp. SeeSection 6.5 [Resuming Execution], page, $6r
details.

Execute one machine instruction, then stop and retuppto. SeeSection 8.2 [Ma-
chine Code Execution], page 14@r details.

Continue to the next source line in the current (innermost) stack frame. This is similar
to ‘Step ’, but function calls that appear within the line of code are executed without
stopping. Se&ection 6.5 [Resuming Execution], page far details.

Execute one machine instruction, but if it is a function call, proceed until the function
returns. Se&ection 8.2 [Machine Code Execution], page ,1fo? details.

Continue running until a source line past the current line, in the current stack frame, is
reached. Seg€ection 6.5 [Resuming Execution], page far details.

Continue running until just after function in the selected stack frame returns. Print the
returned value (if any). Seeection 6.5 [Resuming Execution], page for details.

Chapter 3: The DDD Windows 57

Cont

Kill

Up

Down

Undo

Redo

Edit

Make

Resume program execution, at the address where your program last stopped; any
breakpoints set at that address are bypassedS8e@n 6.5 [Resuming Execution],
page 96for details.

Kill the process of the debugged program. Sawtion 6.11 [Killing the Program],
page 104for details.

Select the stack frame (i.e. the function) that called this one. This advances toward
the outermost frame, to higher frame numbers, to frames that have existed longer. See
Section 6.7 [Stack], page 9for detalils.

Select the stack frame (i.e. the function) that was called by this one. This advances
toward the innermost frame, to lower frame numbers, to frames that were created more
recently. Seé&ection 6.7 [Stack], page 9for details.

Undo the most recent action. Almost all commands can be undone this way. See
Section 3.5 [Undo and Redo], page, &@r details.

Redo the action most recently undone. Every command undone can be redone this
way. SeeSection 3.5 [Undo and Redo], page, for details.

Invoke an editor for the current source file. Seection 9.1 [Editing Source Code],
page 145for details.

Run themake program with the most recently given arguments. Seetion 9.2 [Re-
compiling], page 146for details.

3.3.1 Customizing the Command Tool

The Command Tool can be customized in various ways.

SeeSection 10.4.1 [Customizing Buttons], page et details on customizing the tool buttons.

3.3.1.1 Disabling the Command Tool

You can disable the command tool and show its buttons in a separate row beneath the tool
bar. To disable the command tool, setlit = Preferences = Source = Tool Buttons

Location

= Source Window .

58 Debugging with DDD

£ DDD Preferences

General || Source Data || Startup | Fonts || Helpers |

Show Position and Breakpoints <> as Glyphs - as Text Characters

Tool buttons location “ Command Tool -~ Source Window
Refer to Program Sources “ by Path Name < by Base Hame
FAnd J7 Words Only |7 Case Sensitive
Cache 7 Source Files [T Machine Code

L1 Display Source Line Numbers
i 0 4.

J— | 2= il [
Tab Width Source Indentation Machine Code Indentation
oK | Hagal | Help |

Source Preferences

Here's the related resource:

commandToolBar (class ToolBar) Resource
Whether the tool buttons should be shown in a tool bar above the source windoty ('
or within the command tool ¢ff ’, default). Enabling the command tool bar disables the
command tool and vice versa.

3.3.2 Command Tool Position

The following resources control the position of the command tool fserion 3.6 [Customiz-
ing], page 60

autoRaiseTool (class AutoRaiseTool) Resource
If ‘on’ (default), ppp will always keep the command tool on top of othepp windows.
If this setting interferes with your window manager, or if your window manager keeps the
command tool on top anyway, set this resourceofd *.

stickyTool (class StickyTool) Resource
If “on’ (default), the command tool automatically follows every movement of the source
window. Whenever the source window is moved, the command tool is moved by the same
offset such that its position relative to the source window remains unchangexdt If, ‘the
command tool does not follow source window movements.

toolRightOffset (class Offset) Resource
The distance between the right border of the command tool and the right border of the source
text (in pixels). Default is 8.

toolTopOffset (class Offset) Resource
The distance between the upper border of the command tool and the upper border of the
source text (in pixels). Default is 8.

Chapter 3: The DDD Windows 59

3.3.2.1 Customizing Tool Decoration

The following resources control the decoration of the command toosegon 3.6 [Customiz-
ing], page 60

decorateTool (class Decorate) Resource
This resource controls the decoration of the command tool.

e |[f thisis ‘off ', the command tool is created adransient window Several window
managers keep transient windows automatically on top of their parents, which is appro-
priate for the command tool. However, your window manager may be configured not
to decorate transient windows, which means that you cannot easily move the command
tool around.

e If this is ‘on’, DDD realizes the command tool astap-level window Such win-
dows are always decorated by the window manager. However, top-level windows are
not automatically kept on top of other windows, such that you may wish to set the
‘autoRaiseTool ’'resource, too.

e If this is ‘auto ' (default), bbD checks whether the window manager decorates tran-
sients. If yes, the command tool is realized as a transient window (as irofhé
setting); if no, the command tool is realized as a top-level window (as inahieset-
ting). Hence, the command tool is always decorated using the “best” method, but the
extra check takes some time.

3.4 Getting Help

DDD has an extensive on-line help system. Here’s how to get help while working>wibh

e You can get a short help text on masbp buttons by simply moving the mouse pointer on it
and leave it there. After a second, a small window (calledon tip; also known asool tip
or balloon help) pops up, giving a hint on the button’s meaning. The button tip disappears as
soon as you move the mouse pointer to another item.

e The status line also displays information about the currently selected item. By clicking on the
status line, you can redisplay the most recent messages.

e You can get detailed help on any visibd®D item. Just point on the item you want help and
press theF1’ key. This pops up a detailed help text.

e ThepDD dialogs all containHelp * buttons that give detailed information about the dialog.

e You can get help on debugger commands by entehiglp at the debugger prompt. See
Section 10.1 [Entering Commands], page ,1for details on entering commands.

e If you are totally stuck, tryHelp = What Now? (the ‘What Now? item in the ‘Help’
menu) or presgCiri+FD. Depending on the current statepp will give you some hints on
what you can do next.

e Of course, you can always refer to the-line documentatian

— ‘'Help = pDD Reference ' gives you access to thepp manual, the ultimateopbD
reference.

— ‘Help = Debugger Reference ’shows you the on-line documentation of the inferior
debugger.

60 Debugging with DDD

— ‘Help = ppD www Page’ gives you access to the latest and greatest information on
DDD.

e Finally, theppD Tip Of The Day gives you important hints with each nevnD invocation.
All these functions can be customized in various ways (&e&ion 3.6.2 [Customizing Help],
page 6).

If, after all, you made a mistake, don’t worry: almost everyp command can be undone. See
Section 3.5 [Undo and Redo], page, 6@ details.

3.5 Undoing and Redoing Commands

Almost everyppb command can be undone, usiriedit =- Undo’ or the ‘Undo’ button on
the command tool.

Likewise, ‘Edit = Redo’ repeats the command most recently undone.

The ‘Edit ' menu shows which commands are to be undone and redone next; this is also indi-
cated by the popup help on thendo’ and ‘Redo’ buttons.

3.6 Customizing DDD

DDD is controlled by severaksources—user-defined variables that take specific values in order
to control and customizepp behavior.

Most DDD resources can be set interactively whilep is running or when invokingppp. See
[Resource Index], page 2 lfor the full list of DDD resources.

We first discuss how customizing works in general; then we turn to customizing parstsoof
introduced so far.

3.6.1 How Customizing DDD Works

3.6.1.1 Resources

Just like any X progranhpb has a number of places to get resource values frompbor, the
most important places to specify resources are:

e The ~/.ddd/init " file (" ~" stands for your home directory). This file is read in byD
upon start-up; the resources specified herein override all other sources (except for resources
given implicitly by command-line options).
If the environment variabl®DD_STATES set, its value is used instead ef.ddd/ .

e The ‘Ddd’ application-defaults file. This file is typically compiled into tleD executable.
If it exists, its resource values override the values compiledimio. If the versions of the
‘Ddd’ application-defaults file and thepp executable do not matcihpp may not function
properly;ppD will give you a warning in this case.

e The command-line options. These options override all other resource settings.

L If you use a Ddd’ application-defaults file, you will not be able to maintain multipleo versions at the
same time. This is why the suitin@dd’ is normally compiled into thepp executable.

Chapter 3: The DDD Windows 61

e If the environment variabl®DD_SESSIONSs set, it indicates the name of a session to start,
overriding all options and resources. This is usedby when restarting itself.

Not every resource has a matching command-line option. Each resource (whether in
‘~/.ddd/init "or ' Ddd) is specified using a line
Ddd* resource: value
For instance, to set theollChildStatus
‘~/.ddd/init F
Ddd*pollChildStatus: off

For more details on the syntax of resource specifications, see the sRESWURCES in the
X(1) manual page.

resource to off ', you would specify in

3.6.1.2 Changing Resources

You can chang®pD resources by three methods:

e UseDDD to change the options, notablidit = Preferences . This works for the most
importantbDD resources. Be sure to save the options (seelion 3.6.1.3 [Saving Options],
page 6) such that they apply to futumrebp sessions, too.

e You can also invokeoDD with an appropriate command-line option. This changes the re-
latedDDD resource for this particulasbp invocation. However, if you save the options (see
Section 3.6.1.3 [Saving Options], page)6the changed resource will also apply to future
invocations.

e Finally, you can set the appropriate resource in a file nanatl/init " in your home
directory. SeéResource Index], page 2,lfor a list of DDD resources to be set.

3.6.1.3 Saving Options

You can save the current option settings by settiadit =- Save Options . Options are
saved in a file namedddd/init "in your home directory whempDD exits. If a sessioRession
is active, options will be saved ir/.ddd/sessions/ session/init ' instead.

The options are automatically saved when exitimg. You can turn off this feature by unsetting
‘Edit = Save Options '. This s tied to the following resource:

saveOptionsOnEXxit (class SaveOnExit) Resource
If *on’ (default), the current option settings are automatically saved imenexits.

3.6.2 Customizing DDD Help

DDD Help can be customized in various ways.

3.6.2.1 Button Tips

Button tips are helpful for novices, but may be distracting for experienced users. You can turn off
button tips via Edit = Preferences = General = Automatic display of Button
Hints = as Popup Tips '’

62 Debugging with DDD

You can also turn off the hint that is displayed in the status line. Just togglé ‘=

Preferences = General =- Automatic Display of Button Hints = inthe
Status Line .
General Source | Data || Startup | Fonts || Helpers |
Automatic Display of Button Hints I as Popup Tips 17 in the Status Line

Automatic Display of Variable Values |7 as Popup Tips 7 in the Status Line
TAB Key Completes 4~ in All Windows < in Console Only
I lconify all Windows at Once

_I Uniconify When Ready

L1 Suppress X Wamings

I Warm if Multiple DDD Instances are Running

7 Continue Automatically when Mouse Pointer is Frozen

Undo Buffer Size §E2DDD kBytes Clear Undo Buffe:‘l
oK | Fanet | Help |

General Preferences

These are the relatatbp resources (seBection 3.6 [Customizing], page 0

buttonTips (class Tips) Resource
If on’ (default), enable button tips.

buttonDocs (class Docs) Resource
If on’ (default), show button hints in the status line.

3.6.2.2 Tip of the day

You can turn off the tip of the day by togglingedit = Preferences = Startup =
Startup Windows = Tip of the Day .

Here is the relatedDD resource (se8&ection 3.6 [Customizing], page 0

startupTips (class StartupTips) Resource
If on’ (default), show a tip of the day uparpbD startup.

SeeSection 2.1.2 [Options], page 1for options to set this resource uponD invocation.
The actual tips are controlled by these resources$seégon 3.6 [Customizing], page B0

startupTipCount (class StartupTipCount) Resource
The numbemn of the tip of the day to be shown at startup. See alsotthe h’ resources.

tipn (class Tip) Resource
The tip of the day numbered (a string).

Chapter 3: The DDD Windows 63

3.6.2.3 Help Helpers

DDD relies on a number of external commands, specified Edit' = Preferences =
Helpers

£ DDD Preferences

General | Source | Data | Startup | Fonts || Helpers
Eit Sources | oc +@LINEE @FILEG
Get Core File |
List Processes IEns w 2y fdevinull || ps —ef 2> fdev/null || ps
Execution Window Iﬁxterm —bg "greyss” —fg "black” —cr "DarkGreen” —
Uncompress |§gz1‘p -d —¢
Weh Browser I}nozﬂ]a —remote "openURLCAURLE}" || netscape —re
Plot |Egnuu1ut —bg "greyds” —font "@FONT@" —name "@NAME
Piot Window “* External - Builtin

0K | fanel Help |

Setting Helpers Preferences

To uncompress help texts, you can definkJacompress ' command:

uncompressCommand(class UncompressCommand) Resource
The command to uncompress the builtemp manual, theopp license, and thebpp news.
Takes a compressed text from standard input and writes the uncompressed text to standard
output. The default value gzip -d -c ; typical values includecat andgunzip -c

To view www pages, you can define Web Browser ' command:

wwwCommand (class WWWCommand) Resource
The command to invoke www browser. The string@URL@s replaced by thesrL to
open. Default is to try a running Netscape first (tryimgzilla , thennetscape), then
SWWWBROWSHRN to invoke a new Netscape process, then to let a running Emacs or
XEmacs do the job (vignudoit), then to invoke Mosaic, then to invoke Lynx in an xterm.

To specify netscape-6.0 ' as browser, use the setting:

Ddd*wwwCommand: \
netscape-6.0 -remote 'openURL(@QURL@) \
|| netscape-6.0 '@QURL@’

This command first tries to connect to a runnimgtscape-6.0 browser; if this fails, it
starts a newetscape-6.0 process.

This is the defaultvww Page shown byHelp = ppp www Page™

64 Debugging with DDD

wwwPage (classwwwPage) Resource
Theppp www page. Valuehttp://www.gnu.org/software/ddd/

3.6.3 Customizing Undo

DDD Undo can be customized in various ways.

To set a maximum size for the undo buffer, setit = Preferences = General =
Undo Buffer Size .

This is related to themhaxUndoSize ' resource:

maxuUndoSize (class MaxUndoSize) Resource
The maximum memory usage (in bytes) of the undo buffer. Useful for limiting memory
usage. A negative value means to place no limit. Defa@®B@0000 , or 2000 kBytes.

You can also limit the number of entries in the undo buffer, regardless of siz&¢sgen 3.6
[Customizing], page 60

maxUndoDepth (class MaxUndoDepth) Resource
The maximum number of entries in the undo buffer. This limits the number of actions that
can be undone, and the number of states that can be shown in historic mode. Useful for
limiting bDD memory usage. A negative value (default) means to place no limit.

To clear the undo buffer at any time, thus reducing memory usage, bEdi¢ ‘=
Preferences = General = Clear Undo Buffer

3.6.4 Customizing the DDD Windows

You can customize thepp Windows in various ways.

3.6.4.1 Splash Screen

You can turn off theppp splash screen shown upon startup. Just selBclit' =
Preferences = Startup DDD Splash Screen .

http://www.gnu.org/software/ddd/

Chapter 3: The DDD Windows 65

£ DDD Preferences
General | Source | Data ||W Fonts | | Helpers
Window Layout “ Stacked Windows .- Separate Windows
CirisCis “* Copy -~ Interupt
Cirl+A is “ Select All - Beginning of Line

Tool Bar Appearance |7 Images I Captions [Aat 3 Color _i Boitom

Keyboard Focus “ Point to Type . Click to Type
Data Scrolling “* Panner < Scrollbars
Debugger Type 7' Determine Automatically from Arg| it:

4 GDB + DBX + XDB v JDB + PYDB - Per

Startup Windows. /7 DDD Splash Screen _| Tip of the Day
oK Reget | Help

Startup Preferences

The value applies only to the nexbp invocation.

This setting is related to the following resource:

splashScreen(class SplashScreen) Resource
If ‘on’ (default), show abpD splash screen upon start-up.

You can also customize the appearance of the splash screeBdsgen 3.6 [Customizing],
page 60

splashScreenColorKey(class ColorKey) Resource
The color key to use for thepp splash screen. Possible values include:

e ‘c’ (default) for a color visual,

e ‘g’ for a multi-level greyscale visual,

e ‘g4’ for a 4-level greyscale visual, and

e ‘nifor a dithered monochrome visual.

e ‘best ' chooses the best visual available for your display.

Please note: ibpD runs on a monochrome display, onibp was compiled without thepwm
library, only the monochrome versiom{) can be shown.

3.6.4.2 Window Layout

By default,pDD stacks commands, source, and data in one single top-level window. To have
separate top-level windows for source, data, and debugger consoledget = Preferences
= Startup = Window Layout = Separate Windows .

66 Debugging with DDD

_ DDD: Debugger Console =5
Fle Edit View Program Commands Help |
3 s A
Breakpoint 1, Tist_test (start=i6) at
Debugger COHSO|e T fusrjusers/sts1/zel ler/ddd/ddd/ cxatest, (2150
(adh} aranh disahle disnlaw 2 5
| £ DDD: fusriusers/sts] izelleridduiddd/cx=test.C S [=] |
Fle Edit View Program Status Source Help | £
0| s 9 4 @ @ 9 e
Lookup Findw Break lstch Print Dipiay
jst— 4 o RS A
Tist—>next->next—>next Tist;
delete 1ist—>next—>next; Run
delete Tlist—rnext; 4
3 delete Tist; Interrupt
H Step | Stepi
Source Window ——— . =

// Test disambiguation Mext | Mexti
void Tist_test(double d)

Tist_test{int{d));

I_ _ 0x804B8a24 <Jist_test__Fi+14@>: mov] Sedz,0x8(%eax) Back |

5|8
g
2

2 [

Fud
£1 DDD: Program Data 19] 3 | P
Fle Edit View Program Data ﬂelp'|
():|*h‘sc‘ 2 8o # =

Oifpmy b0 | e S& uiacn
ShowsHide selected detailsh———————— i
: *list->next | BUtton Tlp

walue = 86
self = Ox804abgg
next = 0x804ah38

| [rTist
Data Window;,

The DDD Layout using Separate Windows
Here are the relatedbpD resources:

separateDataWindow (class Separate) Resource
If “on’, the data window and the debugger console are realized in different top-level windows.
If * off ’ (default), the data window is attached to the debugger console.

separateSourceWindow(class Separate) Resource
If “on’, the source window and the debugger console are realized in different top-level win-
dows. If ‘off ’ (default), the source window is attached to the debugger console.

By default, theppD tool bars are located on top of the window. If you prefer the tool bar being
located at the bottom, as ibDD 2.x and earlier, setEdit = Preferences = Startup =
Tool Bar Appearance = Bottom .

This is related to thetbolbarsAtBottom ' resource:

toolbarsAtBottom (class ToolbarsAtBottom) Resource

Whether source and data tool bars should be placed above source and data, respectively
(‘off ’, default), or below, as impD 2.x (‘on’).

The bottom setting is only supported for separate tool bars—that is, you must either choose
separate windows or configure the tool bar to have neither images nor captiofe($ees 3.2.1
[Customizing the Tool Bar], page h4

If you use stacked windows, you can choose whether there should be one tool bar or two tool
bars. By defaultpbpp uses two tool bars if you use separate windows and disable captions and
images, but you can also explicitly change the setting via this resource:

Chapter 3: The DDD Windows 67

Resource

commonToolBar (class ToolBar)
Whether the tool bar buttons should be shown in one common tool bar at the top of the

commonbDD window (‘on’, default), or whether they should be placed in two separate tool
bars, one for data, and one for source operations, asin2.x (‘off ’).

You can also change the location of @tatus line(seeSection 3.6 [Customizing], page 0

Resource

statusAtBottom (class StatusAtBottom)
If ‘on’ (default), the status line is placed at the bottom of e source window. If off 7,

the status line is placed at the top of thied source window (as ippD 1.X).

SeeSection 2.1.2 [Options], page lfor options to set these resources uparp invocation.

3.6.4.3 Customizing Fonts
You can configure the basiebp fonts at run-time. Each font is specified using two members:
e The font family is an X font specifications, where the initiglotindry- * specification may
be omitted, as well as any specification affemily. Thus, a pair family- weight’ usually

suffices.
e Thefont size is given as (resolution-independent) 1/10 points.

To specify fonts, selecEdit = Preferences = Fonts .

General | Source | pata | Startup ”FIJT Helpers |
Default Font | hielverica-hold Size |a_n_ Browse...|
Variahle Width gEheNeticaﬂnedium Size |¥_ Bruws_'e...l
Fixed Width Eflucidatypewriter—medium Size |? Bmws_‘e...l
0K | Ragat Help |

Setting Font Preferences

The ‘Browse ' button opens a font selection program, where you can select fonts and attributes
interactively. Clicking quit "or ‘select ’in the font selector causes all non-default values to be

transferred to thepp font preferences panel.
The following fonts can be set using the preferences panel:

68 Debugging with DDD

Default Font
The default ppp font to use for labels, menus, and buttons. Default is
‘helvetica-bold "
Variable Width
The variable widthppp font to use for help texts and messages. Default is
‘helvetica-medium .
Fixed Width
The fixed widthppp font to use for source code, the debugger console, text fields, and
the execution window. Default isucidatypewriter-medium "
Data Theppb font to use for data displays. Default Is¢idatypewriter-medium ",
Changes in this panel will take effect only in the nexip session. To make it effective right
now, restarbpp (using File = Restart DDD’).
After having made changes in the panabp will automatically offer you to restart itself, such
that you can see the changes taking effect.
The ‘Reset ' button restores the most recently saved preferences.
Here are the resources related to font specifications:

defaultFont (class Font) Resource
The defaultbpp font to use for labels, menus, buttons, etc. The font is specified as an X font

spec, where the initiaFoundry specification may be omitted, as well as any specification
after Family.

Default value is helvetica-bold .

To set the defaulbpp font to, say, helvetica medium ', insert a line
Ddd*defaultFont: helvetica-medium

in your ‘~/.ddd/init 'file.

defaultFontSize (class FontSize) Resource
The size of the defaulbpp font, in 1/10 points. This resource overrides any font size spec-
ification in the defaultFont '’ resource (see above). The default valua2§ for a 12.0
point font.

variableWidthFont (class Font) Resource
The variable widthbpp font to use for help texts and messages. The font is specified as an X
font spec, where the initidloundry specification may be omitted, as well as any specification
after Family.

Default value is helvetica-medium-r "

To set the variable widtbpp font family to, say, times ’, insert a line
Ddd*fixedWidthFont: times-medium

in your ‘~/.ddd/init " file.

variableWidthFontSize (class FontSize) Resource
The size of the variable widthpp font, in 1/10 points. This resource overrides any font
size specification in thevariableWidthFont " resource (see above). The default value

is 120 for a 12.0 point font.

Chapter 3: The DDD Windows 69

fixedWidthFont (class Font) Resource
The fixed widthppp font to use for source code, the debugger console, text fields, and
the execution window. The font is specified as an X font spec, where the iRétisldry
specification may be omitted, as well as any specification &fteiily.

Default value is fucidatypewriter-medium "

To set the fixed widtlDD font family to, say, tourier ’, insert a line
Ddd*fixedWidthFont: courier-medium

in your ‘~/.ddd/init " file.

fixedWidthFontSize (class FontSize) Resource
The size of the fixed widtlbpp font, in 1/10 points. This resource overrides any font size
specification in thefixedWidthFont ' resource (see above). The default valug2e for
a 12.0 point font.

dataFont (class Font) Resource
The fixed widthppp font to use data displays. The font is specified as an X font spec, where
the initial Foundry specification may be omitted, as well as any specification &fteiily.

Default value is lucidatypewriter-medium ",

To set theppp data font family to, say,courier ', insert a line
Ddd*dataFont: courier-medium

in your ‘~/.ddd/init ' file.

dataFontSize (class FontSize) Resource
The size of theoDD data font, in 1/10 points. This resource overrides any font size specifi-
cation in the tlataFont ’ resource (see above). The default valua2® for a 12.0 point
font.

As all font size resources have the same class (and by default the same value), you can easily
change the defauitpp font size to, say, 9.0 points by inserting a line

Ddd*FontSize: 90
in your ‘~/.ddd/init 'file.
Here’s how to specify the command to select fonts:

fontSelectCommand (class FontSelectCommand) Resource
A command to select from a list of fonts. The strir@FONT@ replaced by the current
DDD default font; the string@TYPE@s replaced by a symbolic name of thp font to
edit. The program must either place the name of the selected font PRHdARYselection
or print the selected font on standard output. A typical value is:

Ddd*fontSelectCommand: xfontsel -print

SeeSection 2.1.2 [Options], page ,Ifor options to set these resources upab invocation.

70 Debugging with DDD

3.6.4.4 Toggling Windows

In the default stacked window setting, you can turn the individuaib windows on and off
by toggling the respective items in th&¥iew ' menu (seeSection 3.1.3 [View Menu], page 34
When using separate windows (seection 3.6.4.2 [Window Layout], page);you can close the
individual windows via File = Close ’ or by closing them via your window manager.

Whether windows are opened or closed when staming is controlled by the following re-
sources, immediately tied to th¥iew ' menu items:

openDataWindow (class Window) Resource
If * off * (default), the data window is closed upon start-up.

openDebuggerConsolgclass Window) Resource
If ‘ off ’, the debugger console is closed upon start-up.

openSourceWindow (class Window) Resource
If * off ’, the source window is closed upon start-up.

SeeSection 2.1.2 [Options], page lfor options to set these resources uparp invocation.

3.6.4.5 Text Fields

TheppD text fields can be customized using the following resources:

popdownHistorySize (class HistorySize) Resource
The maximum number of items to display in pop-down value histories. A valQddéfault)
means an unlimited number of values.

sortPopdownHistory (class SortPopdownHistory) Resource
If “on’ (default), items in the pop-down value histories are sorted alphabeticallpfflf";
most recently used values will appear at the top.

3.6.4.6 Icons
If you frequently switch betweenpp and other multi-window applications, you may like to
set Edit = Preferences = General = Iconify all windows at once . This way,
all ppp windows are iconified and deiconified as a group.
This is tied to the following resource:
grouplconify (class Grouplconify) Resource

If this is ‘on’, (un)iconifying anypbD window causes all othespbp windows to (un)iconify
as well. Default isoff ’, meaning that eachpp window can be iconified on its own.

If you want to keepppp off your desktop during a longer computation, you may like to set
‘Edit = Preferences = General = Uniconify when ready . This way, you can
iconify DDD while it is busy on a command (e.g. running a progranpp will automatically pop
up again after becoming ready (e.g. after the debugged program has stopped at a breakpoint). See
Section 6.4 [Program Stop], page, $6r a discussion.

Here is the related resource:

Chapter 3: The DDD Windows 71

uniconifyWhenReady (class UniconifyWhenReady) Resource
If this is ‘on’ (default), theppbp windows are uniconified automatically whenevass be-
comes ready. This way, you can iconifypD during some longer operation and have it
uniconify itself as soon as the program stops. Setting thisffo * leaves thebpbD windows
iconified.

3.6.4.7 Adding Buttons

You can extendpD with new buttons. Seé&ection 10.4 [Defining Buttons], page 15or
details.

3.6.4.8 More Customizations

You can change just about any label, color, keyboard mapping, etc. by changing resources from
the ‘Ddd’ application defaults file which comes with tleoD source distribution. Here’s how it
works:

¢ I|dentify the appropriate resource in tHedd’ file.
e Copy the resource line to yourf.ddd/init ' file and change it at will.

SeeAppendix A [Application Defaults], page 15for details on the application-defaults file.

3.6.5 Debugger Settings

For most inferior debuggers, you can change their internal settings slitg ‘= Settings
Using the settings editor, you can determine whethet @ames are to be demangled, how many
array elements are to print, and so on.

£ DDD: Debugger Settings E3
GDB Settings:
[T Autoloading of shared library symbols ﬂ £l
o1 Stopping for shared library events _____ ﬂ
Current Ce+ demangling style | Automatic selection hased on t i ﬂ
Current source | R t tic setting based on source file ﬂ
Rangechecking . - ___________________________________ auto ﬂ J
Typechecking ______________________________________ auto ﬂ E
Search path for source ﬁ|es_____l5famdﬁ nfbsstpfusriusers/stpszellersd ﬂ
search path for object files IE}'usrfusersfsts1 fzellerfbin: fusrfuser ﬂ
rr— | Y
OK | Reset Help |

GDB Settings Panel (Excerpt)

72 Debugging with DDD

The capabilities of the settings editor depend on the capabilities of your inferior debugger. Click-
ing on ‘?” gives an an explanation on the specific item; thes documentation gives more details.

Use Edit = Undo’ to undo changes. Clicking orReset ' restores the most recently saved
settings.

Some debugger settings are insensitive and cannot be changed, because doing so would endanger
DDD operation. See thgtiblnitCommands ’and ‘dbxInitCommands ’resources for details.

All debugger settings (except source and object paths) are savedmiitbptions.

Chapter 4: Navigating through the Code 73

4 Navigating through the Code

This chapter discusses how to access code from within.

4.1 Compiling for Debugging

In order to debug a program effectively, you need to generate debugging information when you
compile it. This debugging information is stored in the object file; it describes the data type of
each variable or function and the correspondence between source line numbers and addresses in the
executable code.

To request debugging information, specify thg * option when you run the compiler.

Many C compilers are unable to handle thg *and ‘-O’ options together. Using those compil-
ers, you cannot generate optimized executables containing debugging information.

Gee, theaNu C compiler, supports-g ’ with or without ‘-O’, making it possible to debug
optimized code. We recommend that yalwaysuse g ' whenever you compile a program. You
may think your program is correct, but there is no sense in pushing your luck.

When you debug a program compiled witg “O ’, remember that the optimizer is rearranging
your code; the debugger shows you what is really there. Do not be too surprised when the execution
path does not exactly match your source file! An extreme example: if you define a variable, but
never use itppD never sees that variable—because the compiler optimizes it out of existence.

4.2 Opening Files

If you did not invokepDD specifying a program to be debugged, you can useRhe ‘' menu
to open programs, core dumps and sources.

4.2.1 Opening Programs

To open a program to be debugged, sel&iie’ = Open Program '.? Click on ‘Open’ to
open the program

In JDB, select File = Open Class ' instead. This gives you a list of available classes to
choose from.

L If you useppb to debug Perl, Python or Bash scripts, then this section does not apply.

2 with xpB and somesx variants, the debugged program must be specified upon invocation and cannot
be changed at run time.

74 Debugging with DDD

£2 DDD: Open Program | %]
Filter

File Filter *I»fUSI’fUSEI’S}'StS‘] fzeller/ddd/ 14 nusx/ddds/%

Directorite Files

I [ctest i
Iddy.. cxxtest |
ddd File List
Directory List ddd-2.99.1-i586 - pc - linux -gnulibc
grabtest
stringify
userinfo
A £
I i~ R
Program:

Program to be opened *’l rfusers/stst/zeller/ddd/1inux/ddd/ cxxtest

Open Filter Cancel Help

Click here to open

Opening a program to be debugged

To re-open a recently debugged program or class, sétédet * = Open Recent ' and choose
a program or class from the list.

If no sources are found, Séeection 4.3.4 [Source Path], pageg far specifying source directo-
ries.

4.2.2 Opening Core Dumps

If a previous run of the program has crashed and you want to find out why, you cambave
examine itscore dump.?

To open a core dump for the program, selddéteé = Open Core Dump'. Click on ‘Open’
to open the core dump.

Before ‘Open Core Dump’, you should first useFile = Open Program ' to specify the
program that generated the core dump and to load its symbol table.

4.2.3 Opening Source Files

To open a source file of the debugged program, sefiélet ©° = Open Source .
e UsingGDB, this gives you a list of the sources used for compiling your program.

e Using other inferior debuggers, this gives you a list of accessible source files, which may or
may not be related to your program.

Click on ‘Open’ to open the source file. Sé&=ction 4.3.4 [Source Path], pagg ifho sources
are found.

3 JpB, PyDB, Perl, and Bash do not support core dumps.

Chapter 4: Navigating through the Code 75

4.2.4 Filtering Files

When presenting files to be opened)p by default filters files when opening execution files,
core dumps, or source files, such that the selection shows only suitable files. This requipesthat
opens each file, which may take time. Sgection 4.4.6 [Customizing File Filtering], page, 80
you want to turn off this feature.

4.3 Looking up Items

As soon as the source of the debugged program is availablesotitee windowdisplays its
current source text. (s€&=ction 4.3.4 [Source Path], page if@ source text cannot be found.)

In the source window, you can lookup and examine function and variable definitions as well as
search for arbitrary occurrences in the source text.

4.3.1 Looking up Definitions

If you wish to lookup a specific function or variable definition whose name is visible in the
source text, click withmouse button bn the function or variable name. The name is copied to the
argument field. Change the name if desired and click onltheKup ’ button to find its definition.

Press Button 3 on Item

£ Test disambijguation
void 1ist_test{double d)

i
. s (intidid
3 Print 1ist_test | Showltem Value
Display 1ist_test ———
void referenc— Date*&
Print *1ist_test
date = *¢ . ” .
delete dz DISplay *1ist test
date_ptr Whatis list_test - Show ltem Type
i Lookup 1ist_test € Lookup Item’s Definition in Source Code
void array_te Break at 11st_test|————— Setand Delete Breakpoint at ltem
Clear at 1ist_test

& Lookup definition of the selected item

The Source Popup Menu

As a faster alternative, you can simply pressuse button 8n the function name and select the
‘Lookup ' item from the source popup menu.

As an even faster alternative, you can also double-click on a function call (an identifier followed
by a ‘(' character) to lookup the function definition.

76 Debugging with DDD

If a source file is not found, Se®eection 4.3.4 [Source Path], page, fér specifying source
directories.

4.3.2 Textual Search

If the item you wish to search is visible in the source text, click witbuse button bn it.
The identifier is copied to the argument field. Click on tkénd >> ’ button to find following
occurrences and offrind >> = Find << () ’to find previous occurrences.

By default,pDpD finds only complete words. To search for arbitrary substrings, change the value
of the ‘Source = Find Words Only ' option.

4.3.3 Looking up Previous Locations

After looking up a location, useéEdit = Undo’ (or the ‘Undo’ button on the command tool)
to go back to the original locationsEdit = Redo’ brings you back again to the location you
looked for.

Argument for command buttons on the right Click here to find further occurrences of ‘tree_test’

Click here to lookup ‘tree_test’

£ DDD: fusrfusersists1fzellerfdddfddd/cxxtest.C
Fle Edit View Program Status Source Help
0: I trea_tast] Loﬁu e e e L
5 p o Fihd:» Ereak latch Print Displag
- : I
/i Simple binary tree
void EREEMEEEC
i
Enabled Breakpoint —————— @ Tree *tree = 0;
P tree = new Tree(?, "aAda"d: /4 Byron Lovelace Interrupt
tree—:left = new Tree(l, "Grace"); A7 Murray Hopper : :
tree—:left—rleft = new Tree{3, "Tudy"l; £ Clapp MM
Execution Positon —————=#p tree—:left—sright = new Tree(f, "Kathleen"); // McNulty Mest | Mesxti
tree=>right = new Tree{l, "Mildred"); // Koss T e -
[y {1415
tree—:date.set(Tue, 23, 11, 1994): Cont] Kl
tree—rdate.set(Wed, 30, 11, 1994); -
. . g | Daswn
Disabled Breakpoint ————— =i delate tree; _
¥ Back | Fud
Y Edit | Make
Y
i
Program Counter ————= Toua0488e8 <tree_test_ Fy+121»: pushl $0x80496a7
0x80488ee <tree_test_ Fv+126>: pushl $0=E :‘
A tree_test = fvoid (33 0xB048B70 <tree_testivoid): -

The Source Window

4.3.4 Specifying Source Directories

Executable programs sometimes do not record the directories of the source files from which
they were compiled, just the names. Even when they do, the directories could be moved between
the compilation and your debugging session.

Chapter 4: Navigating through the Code 77

Here's howaDB accesses source files; other inferior debuggers have similar methods.

GDB has a list of directories to search for source files; this is calleddhee path. Each time
GDB wants a source file, it tries all the directories in the list, in the order they are present in the list,
until it finds a file with the desired name. Note that the executable search pathused for this
purpose. Neither is the current working directory, unless it happens to be in the source path.

If apB cannot find a source file in the source path, and the object program records a directory,
GDB tries that directory too. If the source path is empty, and there is no record of the compilation
directory,GDB looks in the current directory as a last resort.

To specify a source path for your inferior debugger, usdit = Debugger Settings
(seeSection 3.6.5 [Debugger Settings], pageafd search for appropriate entries (ins, this is
‘Search path for source files .

If * Debugger Settings ' has no suitable entry, you can also specify a source path for the
inferior debugger when invokingpp. SeeSection 2.1.4 [Inferior Debugger Options], page fot
details.

When using DB, you can set th€ELASSPATHenvironment variable to specify directories where
JDB (andppD) should search for classes.

If DDD does not find a source file for any reason, check the following issues:

e In order to debug a program effectively, you need to generate debugging information when
you compile it. Without debugging information, the inferior debugger will be unable to locate
the source code. To request debugging information, specify-gheoption when you run the
compiler. Seésection 4.1 [Compiling for Debugging], page, Tér details.

e You may need to tell your inferior debugger where the source code files ar&e8gen 4.3.4
[Source Path], page 7for details.

Using ¢DB, you can also create a locagdbinit ' file that contains a linairectory
path. Here,path is a colon-separated list of source paths.

4.4 Customizing the Source Window

The source window can be customized in a number of ways, most of them accesdeditvia *
= Preferences = Source .

78 Debugging with DDD

£ DDD Preferences

General || Source Data || Startup | Fonts || Helpers |

Show Position and Breakpoints <> as Glyphs - as Text Characters

Tool buttons location “ Command Tool -~ Source Window
Refer to Program Sources “ by Path Name < by Base Hame
FAnd J7 Words Only |7 Case Sensitive
Cache 7 Source Files [T Machine Code

L1 Display Source Line Numbers
i 0 4.

J— | 2= il [
Tab Width Source Indentation Machine Code Indentation
oK | Hagal | Help |

Source Preferences

4.4.1 Customizing Glyphs

In the source text, the current execution position and breakpoints are indicated by symbols
(glyphs). As an alternativeppD can also indicate these positions using text characters. If you
wish to disable glyphs, setEdit = Preferences = Source = Show Position and
Breakpoints = as Text Characters ' option. This also make®DpD run slightly faster,
especially when scrolling.

This setting is tied to this resource:

displayGlyphs (class DisplayGlyphs) Resource
If this is ‘on’, the current execution position and breakpoints are displayed as glyphs; other-
wise, they are shown through characters in the text. The defaudhis SeeSection 2.1.2
[Options], page 16for the “-glyphs "and *--no-glyphs ' options.

You can further control glyphs using the following resources:

cacheGlyphimages(class CacheMachineCode) Resource
Whether to cache (share) glyph imagesn() or not (‘off ’). Caching glyph images re-
quires less X resources, but has been reported to fail with OSF/Motif 2.1 on XFree86 servers.
Default is 'off ’ for OSF/Motif 2.1 or later oraNU/Linux machines, andon’ otherwise.

glyphUpdateDelay (class GlyphUpdateDelay) Resource
A delay (in ms) that says how much time to wait before updating glyphs while scrolling the
source text. A small value results in glyphs being scrolled with the text, a large value disables
glyphs while scrolling and makes scrolling faster. Defalil.

maxGlyphs (class MaxGlyphs) Resource
The maximum number of glyphs to be displayed (defali). Raising this value causes
more glyphs to be allocated, possibly wasting resources that are never needed.

Chapter 4: Navigating through the Code 79

4.4.2 Customizing Searching

Searching in the source text (section 4.3.2 [Textual Search], page icontrolled by these
resources, changed via tHgdurce ' menu:

findCaseSensitive(class FindCaseSensitive) Resource
If this is ‘on’ (default), the Find ' commands are case-sensitive. Otherwise, occurrences
are found regardless of case.

findWordsOnly (class FindWordsOnly) Resource
If this is ‘on’ (default), the Find ' commands find complete words only. Otherwise, arbi-
trary occurrences are found.

4.4.3 Customizing Source Appearance

You can haveppp show line numbers within the source window. UsEdit =
Preferences = Source = Display Source Line Numbers '

displayLineNumbers (class DisplayLineNumbers) Resource
If this is ‘on’, lines in the source text are prefixed with their respective line number. The
default is off .

You can instructbpD to indent the source code, leaving more room for breakpoints and
execution glyphs. This is done using thEdit =- Preferences = Source = Source
indentation ' slider. The default value i8 for no indentation at all.

indentSource (class Indent) Resource
The number of columns to indent the source code, such that there is enough place to display
breakpoint locations. Defaul@.

By default,pDD uses a minimum indentation for script languages.

indentScript (class Indent) Resource
The minimum indentation for script languages, such as Perl, Python, and Bash. D&fault:

The maximum width of line numbers is controlled by this resource.

lineNumberWidth (class LineNumberWidth) Resource
The number of columns to use for line numbers (if displaying line numbers is enabled). Line
numbers wider than this value extend into the breakpoint space. Default:

If your source code uses a tab width different fr8rthe default), you can set an alternate width
using the Edit = Preferences = Source = Tab width ’slider.

tabWidth (class TabWidth) Resource
The tab width used in the source window (defa8l:

80 Debugging with DDD

4.4.4 Customizing Source Scrolling

These resources control when the source window is scrolled:

linesAboveCursor (class LinesAboveCursor) Resource
The minimum number of lines to show before the current location. Defafilt is

linesBelowCursor (class LinesBelowCursor) Resource
The minimum number of lines to show after the current location. Defa@lt is

4.4.5 Customizing Source Lookup

SomeDBX andxXDB variants do not properly handle paths in source file specifications. If you
want the inferior debugger to refer to source locations by source base names only, urisditthe *
= Preferences = Source = Referto Program Sources by full path name '
option.

This is related to the following resource:

useSourcePath(class UseSourcePath) Resource
If this is ‘off ’ (default), the inferior debugger refers to source code locations only by their
base names. If this i®h’ (default), bbD uses the full source code paths.

By default, DbD caches source files in memory. This is convenient for remote debugging,
since remote file access may be slow. If you want to reduce memory usage, ungedithe=-
Preferences = Source = Cache source files " option.

This is related to the following resource:

cacheSourceFilegqclass CacheSourceFiles) Resource
Whether to cache source file®(i’, default) or not (bff "). Caching source files requires
more memory, but makespp run faster.

4.4.6 Customizing File Filtering

You can control whethenpp should filter files to be opened.

filterFiles (class FilterFiles) Resource
If this is ‘on’ (default), DDD filters files when opening execution files, core dumps, or source
files, such that the selection shows only suitable files. This requirestitabpens each file,
which may take time. If this isoff ’, DDD always presents all available files.

Chapter 5: Stopping the Program 81

5 Stopping the Program

The principal purposes of using a debugger are so that you can stop your program before it
terminates; or so that, if your program runs into trouble, you can investigate and find out why.

Inside DDD, your program may stop for any of several reasons, such as a signal, a breakpoint,
or reaching a new line aftermpp command such asStep ’. You may then examine and change
variables, set new breakpoints or remove old ones, and then continue execution.

The inferior debuggers supported byb support two mechanisms for stopping a program upon
specific events:

e A breakpoint makes your program stop whenever a certain point in the program is reached.
For each breakpoint, you can add conditions to control in finer detail whether your program
stops. Typically, breakpoints are set before running the program.

e A watchpoint is a special breakpoint that stops your program when the value of an expression
changes.

5.1 Breakpoints

5.1.1 Setting Breakpoints

You can set breakpoints by location or by name.

5.1.1.1 Setting Breakpoints by Location

Breakpoints are set at a specific location in the program.
If the source line is visible, click witmouse button bn the left of the source line and then on
the ‘Break ' button.

As a faster alternative, you can simply pressuse button ®n the left of the source line and
select the Set Breakpoint ' item from the line popup menu.

list

1ist—rnext

Press Button 3 on Line e] e R ey
Fet Breakpoint

Sel Temporary Breakpoint | .
Continue Until Here

Set Breakpoint at Line

¥ set Execution Position

A Set 4 hreakpoint at the selected position

The Line Popup Menu

As an even faster alternative, you can simply double-click on the left of the source line to set a
breakpoint.

82 Debugging with DDD

As yet another alternative, you can seleéabtirce = Breakpoints . Click on the ‘Break ’
button and enter the location.

(If you find this number of alternatives confusing, be aware thab users fall into three cate-
gories, which must all be supportetllovice usergxploreppp and may prefer to use one single
mouse button Advanced userknow how to use shortcuts and prefer popup mertxgerienced
usersprefer the command line interface.)

Breakpoints are indicated by a plain stop sign, ortas,'wheren is the breakpoint number. A
greyed out stop sign (or_n_’) indicates a disabled breakpoint. A stop sign with a question mark
(or *?n?’) indicates a conditional breakpoint or a breakpoint with an ignore count set.

If you set a breakpoint by mistake, udedit = Undo’ to delete it again.

5.1.1.2 Setting Breakpoints by Name

If the function name is visible, click witimouse button bn the function name. The function
name is then copied to the argument field. Click on Beak ' button to set a breakpoint there.

As a shorter alternative, you can simply pressuse button ®n the function name and select
the ‘Break at ’item from the popup menu.

As yet another alternative, you can click ddréak.. '’ from the Breakpoint editor (invoked
through Source = Breakpoints) and enter the function name.

5.1.1.3 Setting Regexp Breakpoints

UsingGDB, You can also set a breakpoint on all functions that match a given stBrgak =
Set Breakpoints at Regexp () ' sets a breakpoint on all functions whose name matches the
regular expressiogiven in ‘() '. Here are some examples:

To set a breakpoint on every function that starts wkhi; set ‘() ' to ‘~Xmi.
To set a breakpoint on every member of cld3ate ’, set () 'to ‘“Date:: .
To set a breakpoint on every function whose name contaiios*’, set() 'to‘_fun .

To set a breakpoint on every function that ends itest ’, set‘() 'to‘_test$

5.1.2 Deleting Breakpoints

To delete a visible breakpoint, click wittmouse button bn the breakpoint. The breakpoint
location is copied to the argument field. Click on tl&eéar ' button to delete all breakpoints
there.

If the function name is visible, click witimouse button bn the function name. The function
name is copied to the argument field. Click on tBéear ’ button to clear all breakpoints there.

As a faster alternative, you can simply pressuse button ®n the breakpoint and select the
‘Delete Breakpoint " item from the popup menu.

As yet another alternative, you can select the breakpoint and clickelete ’in the Break-
point editor (invoked throughSource =- Breakpoints).

As an even faster alternative, you can simply double-click on the breakpoint while hdliiihg

Chapter 5: Stopping the Program 83

5.1.3 Disabling Breakpoints

Rather than deleting a breakpoint or watchpoint, you might prefédistble it. This makes the
breakpoint inoperative as if it had been deleted, but remembers the information on the breakpoint
so that you carnable it again later:

To disable a breakpoint, presaouse button n the breakpoint symbol and select the
‘Disable Breakpoint " item from the breakpoint popup menu. To enable it again, select
‘Enable Breakpoint

/i Dereference this
Date *date_ptrs[4];
Press Button 3 on Breakpoint ——& date_ptrs[0] = new Date{Thu, 1,

DateiTue, 10 . .
Properties...] DateiFri. 15 Edit Properties

§f Disable Breakpoint - |Date(Sat, 24 pigaple Breakpoint
Delete Breakpoint.

aet Execution Position 4 k)

A Breakpaint 5 (enabled; delete when hit)

The Breakpoint Popup Menu

As an alternative, you can select the breakpoint and clicklnsable ' or ‘Enable ' in the
Breakpoint editor (invoked througlsburce = Breakpoints .

Disabled breakpoints are indicated by a grey stop sign, ar *, where n is the breakpoint
number.

The ‘Disable Breakpoint "item is also accessible via th€tear ' button. Just press and
hold mouse button bn the button to get a popup menu.

5.1.4 Temporary Breakpoints

A temporary breakpoint is immediately deleted as soon as it is reached.
To set a temporary breakpoint, pressuse button 8n the left of the source line and select the

‘Set Temporary Breakpoint " item from the popup menu.
As a faster alternative, you can simply double-click on the left of the source line while holding
(CirD.

Temporary breakpoints are convenient to make the program continue up to a specific location:
just set the temporary breakpoint at this location and continue execution.

The ‘Continue Until Here " item from the popup menu sets a temporary breakpoint on the
left of the source line and immediately continues execution. Execution stops when the temporary
breakpoint is reached.

L ;ps does not support breakpoint disabling.
2 jpB does not support temporary breakpoints.

84 Debugging with DDD

The ‘Set Temporary Breakpoint "and ‘Continue Until Here " items are also acces-
sible via the Break ’ button. Just press and holdouse button bn the button to get a popup
menu.

5.1.5 Editing Breakpoint Properties

You can change all properties of a breakpoint by presgsiogise button ®n the breakpoint
symbol and selectProperties ’ from the breakpoint popup menu. This will pop up a dialog
showing the current properties of the selected breakpoint.

Disable Breakpoint

£ DDD: Properties: Breakpoint 1

Breakpoint1 © @ o g &

Lookup Enabiz Digabie Temﬁ Delete

Edit Breakpoint Condition Condition ‘twodim < 10
Ignore Count |1 1
Edit Ignore Count 4 : i ~ -~
Commands Recoril | Eiad | Edit »» |

Close | Help |

Breakpoint Properties

As an even faster alternative, you can simply double-click on the breakpoint.

Click on ‘Lookup ’ to move the cursor to the breakpoint’s location.
Click on ‘Enable ' to enable the breakpoint.

Click on ‘Disable ’to disable the breakpoint.

Click on ‘Temp to make the breakpoint temporaty.

Click on ‘Delete ’to delete the breakpoint.

5.1.6 Breakpoint Conditions

The simplest sort of breakpoint breaks every time your program reaches a specified place. You

can also specify @ondition for a breakpoint. A condition is just a Boolean expression in your

3 cps has no way to make a temporary breakpoint non-temporary again.

Chapter 5: Stopping the Program 85

programming language. A breakpoint with a condition evaluates the expression each time your
program reaches it, and your program stops only if the condititmiés

This is the converse of using assertions for program validation; in that situation, you want to
stop when the assertion is violated—that is, when the condition is false. In C, if you want to test
an assertion expressed by the conditiesertion, you should set the conditioh 4ssertion’ on the
appropriate breakpoint.

Break conditions can have side effects, and may even call functions in your program. This can
be useful, for example, to activate functions that log program progress, or to use your own print
functions to format special data structures. The effects are completely predictable unless there is
another enabled breakpoint at the same address. (In thattaasenight see the other breakpoint
first and stop your program without checking the condition of this one.)

Note that breakpoint commands are usually more convenient and flexible for the purpose of
performing side effects when a breakpoint is reached.SS&¢on 5.1.8 [Breakpoint Commands],
page 85for details.

5.1.7 Breakpoint Ignore Counts

A special case of a breakpoint condition is to stop only when the breakpoint has been reached a
certain number of times. This is so useful that there is a special way to do it, usiimnthe count
of the breakpoint. Every breakpoint has an ignore count, which is an integer. Most of the time, the
ignore count is zero, and therefore has no effect. But if your program reaches a breakpoint whose
ignore count is positive, then instead of stopping, it just decrements the ignore count by one and
continues. As a result, if the ignore count valua,ishe breakpoint does not stop the neximes
your program reaches it.

In the field 1gnore Count '’ of the ‘Breakpoint Properties " panel, you can specify the
breakpoint ignore courit.

If a breakpoint has a positive ignore count and a condition, the condition is not checked. Once
the ignore count reaches zemaybd resumes checking the condition.

5.1.8 Breakpoint Commands

You can give any breakpoint (or watchpoint) a seriesnb commands to execute when your
program stops due to that breakpoint. For example, you might want to print the values of certain
expressions, or enable other breakpoints.

Using the Commands buttons of the Breakpoint Properties " panel, you can edit com-
mands to be executed when the breakpoint is hit.

To edit breakpoint commands, click ogdit >> ' and enter the commands in the commands
editor. When done with editing, click ofetlit << ’to close the commands editor.

Using GDB, you can alsaecord a command sequence to be executed. To record a command
sequence, follow these steps:

1. Click on ‘Record ' to begin the recording of the breakpoint commands.

4 jpB, Perl and somesx variants do not support breakpoint ignore counts.
® jpB, PYDB, and somesx variants do not support breakpoint commands.

86 Debugging with DDD

2. Now interact wittbpp. While recordingppb does not execute commands, but simply records
them to be executed when the breakpoint is hit. The recorded debugger commands are shown
in the debugger console.

3. To stop the recording, click ofehd’ or enter ‘end’ at the GbB prompt. Tocancel the record-
ing, click on ‘Interrupt ' or pressESC.

4. You can edit the breakpoint commands just recorded u&dig >>

5.1.9 Moving and Copying Breakpoints

To move a breakpoint to a different location, pressuse button bn the stop sign and drag it
to the desired locatioh.This is equivalent to deleting the breakpoint at the old location and setting
a breakpoint at the new location. The new breakpoint inherits all properties of the old breakpoint,
except the breakpoint number.

To copy a breakpoint to a new location, pré&ssift) while dragging.

5.1.10 Looking up Breakpoints

If you wish to lookup a specific breakpoint, seleBburce =- Breakpoints = Lookup .
After selecting a breakpoint from the list and clicking theokup ’ button, the breakpoint location
is displayed.

As an alternative, you can entétr’ in the argument field, where is the breakpoint number,
and click on the Lookup ' button to find its definition.

5.1.11 Editing all Breakpoints

To view and edit all breakpoints at once, sel&urce = Breakpoints ’. This will popup
the Breakpoint Editor which displays the state of all breakpoints.

5 When glyphs are disabled (sé&ction 4.4 [Customizing Source], page),7Breakpoints cannot be
dragged. Delete and set breakpoints instead.

Chapter 5: Stopping the Program 87

¢ DDD: Breakpoint and Watchpoint Editor

Edit Properties —— 4y ® & & 2 @ -

Props.. Lookup Break. Watch. Font Fraols Disabie Delefe

Num Type isp Enb Address WYhat

hreakpoint]

=top only if twodim < 10
breakpoint already hit 1 time
Hgnore next 1 hits

Condition

Ignore Count

Commands . info locals
3 watchpoint keep v twodim
5 hbreakpoint del v 0Ox08048hcO in array_test() at cxxtest.C:191
E hreakpoint keep n 0x08048<38 in array_test() at cxwtest.C:194

Close | Help |

The Breakpoint Editor

In the breakpoint editor, you can select individual breakpoints by clicking on them. Pressing
while clicking toggles the selection. To edit the properties of all selected breakpoints, click on
‘Props .

5.1.12 Hardware-Assisted Breakpoints

Using GDB, a few more commands related to breakpoints can be invoked through the debugger
console:

hbreak position
Sets a hardware-assisted breakpoinp@tition. This command requires hardware
support and some target hardware may not have this support. The main purpose of this
is EPROM/ROM code debugging, So you can set a breakpoint at an instruction without
changing the instruction.

thbreak pos
Set a temporary hardware-assisted breakpoipbat

Seesection “Setting Breakpoints” iDebugging with GDB, for details.

5.2 Watchpoints

You can make the program stop as soon as some variable value changes, or when some variable
is read or written. This is callegktting a watchpoint on a variable.”

Watchpoints have much in common with breakpoints: in particular, you can enable and disable
them. You can also set conditions, ignore counts, and commands to be executed when a watched
variable changes its value.

7 Watchpoints are available imbs and somepsx variants only. Inxps, a similar feature is available via
XDB assertions; see thexps documentation for details.

88 Debugging with DDD

Please note: on architectures without special watchpoint support, watchpoints currently make
the program execute two orders of magnitude more slowly. This is so because the inferior debugger
must interrupt the program after each machine instruction in order to examine whether the watched
value has changed. However, this delay can be well worth it to catch errors when you have no clue
what part of your program is the culprit.

5.2.1 Setting Watchpoints

If the variable name is visible, click witmouse button bn the variable name. The variable
name is copied to the argument field. Otherwise, enter the variable name in the argument field.
Click on the Watch’ button to set a watchpoint there.

UsingGpB andJbpB 1.2, you can set different types of watchpoints. Click and Inodaise button
1 on the Watch’ button to get a menu.

5.2.2 Editing Watchpoint Properties

To change the properties of a watchpoint, enter the name of the watched variable in the ar-
gument field. Click and holanouse button bn the Watch’ button and selectWatchpoint
Properties .

The Watchpoint Properties panel has the same functionality as the Breakpoint Properties panel
(seeSection 5.1.5 [Editing Breakpoint Properties], pagy &6 an additional feature, you can click
on ‘Print ' to see the current value of a watched variable.

5.2.3 Editing all Watchpoints

To view and edit all watchpoints at once, seldoata = Watchpoints . This will popup
the Watchpoint Editor which displays the state of all watchpoints.

The Watchpoint Editor has the same functionality as the Breakpoint EditoS¢sgen 5.1.11
[Editing all Breakpoints], page §6As an additional feature, you can click darint '’ to see the
current value of a watched variable.

5.2.4 Deleting Watchpoints

To delete a watchpoint, enter the name of the watched variable in the argument field and click
the ‘Unwatch ’ button.

5.3 Interrupting

If the program is already running (s€gapter 6 [Running], page }lyou can interrupt it any
time by clicking the Interrupt ’ button or typing&SC in appD window?® Using GDB, this is
equivalent to sending @IGINT (Interrupt) signal.

‘Interrupt ’and (ESC also interrupt a running debugger command, such as printing data.

8 |f is not bound toCopy’ (seeSection 3.1.11.2 [Customizing the Edit Menu], pag}, ¥ou can
also usgCtri+C) to interrupt the running program.

Chapter 5: Stopping the Program 89

5.4 Stopping X Programs

If your program is a modal X applicatiompD may interrupt it while it has grabbed the mouse
pointer, making further interaction impossible—your X display will be unresponsive to any user
actions.

By default,ppD will check after each interaction whether the pointer is grabbed. If the pointer is
grabbedppp will continue the debugged program such that you can continue to use your X display.

This is how this feature works: When the program stapsp checks for input events such as
keyboard or mouse interaction. bbp does not receive any event within the next 5 seconds
checks whether the mouse pointer is grabbed by attempting to grab and ungrab it. If this attempt
fails, thenppD considers the pointer grabbed.

Unfortunately,ppD cannot determine the program that grabbed the pointer—it may be the de-
bugged program, or another program. Consequently, you have another 10 seconds to cancel contin-
uation beforebpD continues the program automatically.

There is one situation where this fails: if you lock your X display whilep is running, then
pDD Will consider a resulting pointer grab as a result of running the program—and automatically
continue execution of the debugged program. Consequently, you can turn off this feati@éivia ‘
= Preferences = General = Continue Automatically when Mouse Pointer
is Frozen '’

5.4.1 Customizing Grab Checking

The grab checks are controlled by the following resources:

checkGrabs (class CheckGrabs) Resource
If this is ‘on’ (default), DDD will check after each interaction whether the pointer is grabbed.
If this is so,pDD will automatically continue execution of debugged program.

checkGrabDelay (class CheckGrabDelay) Resource
The time to wait (in ms) after a debugger command before checking for a grabbed pointer. If
DDD Sees some pointer event within this delay, the pointer cannot be grabbed and an explicit
check for a grabbed pointer is unnecessary. Defa@®@0 , or 5 seconds.

grabAction (class grabAction) Resource
The action to take after having detected a grabbed mouse pointer. This is a list of newline-
separated commands. Defaulicent , meaning to continue the debuggee. Other possible
choices includéill (killing the debuggee) oquit (exiting DDD).

grabActionDelay (class grabActionDelay) Resource
The time to wait (in ms) before taking an action due to having detected a grabbed pointer.
During this delay, a working dialog pops up telling the user about imminent execution of the
grab action (see thgtabAction ' resource, above). If the pointer grab is released within
this delay, the working dialog pops down and no action is taken. This is done to exclude
pointer grabs from sources other than the debugged program (inclodiny Default is
10000, or 10 seconds.

90

Debugging with DDD

Chapter 6: Running the Program 91

6 Running the Program

You may start the debugged program with its arguments, if any, in an environment of your
choice. You may redirect your program’s input and output, debug an already running process, or
kill a child process.

6.1 Starting Program Execution

To start execution of the debugged program, selPcogram = Run’. You will then be
prompted for the arguments to pass to your program. You can either select from a list of previ-
ously used arguments or enter own arguments in the text field. Afterwards, preButhéutton
to start execution with the selected arguments.

£: DDD: Run Program E3
Arguments

.

—configuration

—indent 45

—trace —separate—windows cxxtest
oo

Empty Argument List

Other Arguments

Click here to select

Run with Arguments
Program Arguments 4i_;d1'5p1 ay elvis.graceland.edu:0.

Click here to run BN w m

Starting a Program with Arguments

To run your program again, with the same arguments, seRrcigram =- Run Again ’ or
press theRun’ button on the command tool. You may also eman , followed by arguments at
the debugger prompt instead.

When you click on Run’, your program begins to execute immediately. Sgepter 5 [Stop-
ping], page 81for a discussion of how to arrange for your program to stop. Once your program has
stopped, you may call functions in your program to examine dataC8epter 7 [Examining Data],
page 105for details.

If the modification time of your symbol file has changed since the lastdineread its symbols,
GDB discards its symbol table, and reads it again. When it doesdbis,andppp try to retain
your current debugger state, such as breakpoints.

92 Debugging with DDD

6.1.1 Your Program’s Arguments

The arguments to your program are specified by the arguments otithé command, as com-
posed in Program = Run’.

In ¢DB, the arguments are passed to a shell, which expands wildcard characters and performs
redirection of /O, and thence to your program. Y&HKELL environment variable (if it exists)
specifies what shettps uses. If you do not definBHELL, GbB uses /bin/sh .

If you use another inferior debugger, the exact semantics on how the arguments are interpreted
depend on the inferior debugger you are using. Normally, the shell is used to pass the arguments,
so that you may use normal conventions (such as wildcard expansion or variable substitution) in
describing the arguments.

6.1.2 Your Program’s Environment

Your program normally inherits its environment from the inferior debugger, which again inherits
it from DDD, which again inherits it from its parent process (typically the shell or desktop).

In GpB, you can use the commandset environment and unset environment
to change parts of the environment that affect your program. s®e&on “Your Program’s
Environment” inDebugging with GDB, for details.

The following environment variables are setibyp:

DDD Set to a string indicating thepp version. By testing whethddDDis set, a debuggee
(or inferior debugger) can determine whether it was invokeody.

TERM Set to dumb’, the ppD terminal type. This is set for the inferior debugger ohly.
TERMCAP Setto ” (none), theoDD terminal capabilities.
PAGER Setto tat ', the preferredbpp pager.

The inferior debugger, in turn, might also set or unset some environment variables.

6.1.3 Your Program’s Working Directory

Your program normally inherits its working directory from the inferior debugger, which again
inherits it fromppD, which again inherits it from its parent process (typically the shell or desktop).

You can change the working directory of the inferior debugger Wde' = Change
Directory ' or viathe ‘cd’ command of the inferior debugger.

6.1.4 Your Program’s Input and Output

By default, the program you run undepp does input and output to the debugger console.
Normally, you can redirect your program’s input and/or output usingl redirections with the
arguments—that is, additional arguments likeinput’ or ‘> output’. You can enter these shell
redirections just like other arguments (s&ection 6.1.1 [Arguments], page)?2

L If the debuggee runs in a separate execution window, the debugdeRsValue is set according to the
‘termType ’resource; Se&ection 6.2.1 [Customizing the Execution Window], pageférdetails.

Chapter 6: Running the Program 93

Warning: While input and output redirection work, you cannot use pipes to pass the output of the
program you are debugging to another program; if you attemptitinis, may wind up debugging
the wrong program. Segection 6.3 [Attaching to a Process], page fef an alternative.

If command output is sent to the debugger console, it is impossiblebor to distinguish
between the output of the debugged program and the output of the inferior debugger.

Program output that confusesb includes:
e Primary debugger prompts (e.ggdb) ’, ‘(dbx) ’or‘(ladebug))
e Secondary debugger prompts (e¥)"
e Confirmation prompts (e.g(y orn))
e Prompts for more output (e.gPfess RETURN to continue)
e Display output (e.g.$pc = 0x1234)

If your program outputs any of these strings, you may encounter problemswithmistaking
them for debugger output. These problems can easily be avoided by redirecting program 1/O, for
instance to the separate execution window {&eeion 6.2 [Using the Execution Window], pagg.93

If the inferior debugger changes the defauity settings, for instance througtstty command
in its initialization file, bbD Mmay also become confused. The same applies to debugged programs
which change the defaultry settings.

The behavior of the debugger console can be controlled using the following resource:

lineBufferedConsole (class LineBuffered) Resource
If this is ‘on’ (default), each line from the inferior debugger is output on each own, such that
the final line is placed at the bottom of the debugger console. If thisfis’, all lines are
output as a whole. This is faster, but results in a random position of the last line.

6.2 Using the Execution Window

By default, input and output of your program go to the debugger console. As an alternative,
can also invoke anaxecution window, where the program terminal input and output is shéwn.

To activate the execution window, seleBrbgram =- Run in Execution Window .

Using the execution window has an important side effect: The output of your program no longer
gets intermixed with the output of the inferior debugger. This makes it far easienforto parse
the debugger output correctly. S8ection 2.5.3 [Debugger Communication], page fé8 details
on the bufferGDBOutput '’ resource.

The execution window is opened automatically as soon as you start the debugged program.
While the execution window is activepp redirects the standard input, output, and error streams
of your program to the execution window. Note that the devidev/tty ’ still refers to the
debugger consoleotthe execution window.

You can override theDD stream redirection by giving alternate redirection operations as argu-
ments. For instance, to have your program read ffden but to write to the execution window,
invoke your program with< file’ as argument. Likewise, to redirect the standard error output to
the debugger console, usa>/dev/tty ' (assuming the inferior debugger and/or yawrx shell
support standard error redirection).

2 The execution window is not available inz.

94 Debugging with DDD

6.2.1 Customizing the Execution Window

You can customize thepp execution window and use a differemty command. The command
is set by Edit = Preferences = Helpers = Execution Window :

termCommand (class TermCommand) Resource
The command to invoke for the execution window—+ay emulator that shows the in-
put/output of the debugged program. A Bourne shell command to run in the separaie
appended to this string. The strin@FONT@ replaced by the name of the fixed width font
used byppD. A simple value is

Ddd*termCommand: xterm -fn @FONT@ -e /bin/sh -c

You can also set the terminal type:

termType (class TermType) Resource
The terminal type provided by theermCommand’ resource—that is, the value of ti€ERM
environment variable to be passed to the debugged program. Defdeitn’ .

Whether the execution window is active or not, as setfrypgram =- Run in Execution
Window’, is saved using this resource:

separateExecWindow(class Separate) Resource
If“on’, the debugged program is executed in a separate execution windaff. If(default),
the debugged program is executed in the console window.

6.3 Attaching to a Running Process

If the debugged program is already running in some process, youttah to this process
(instead of starting a new one witRtn’).3

To attachppD to a process, selecFile =- Attach to Process '. You can now choose
from a list of processes. Then, press tA&ach ' button to attach to the specified process.

3 JpB, PyDB, Perl, and Bash do not support attaching the debugger to running processes.

Chapter 6: Running the Program 95

£ DDD: Attach to Process

Processes

ps output
Selected process

b~ i o

Click to attach —attach | update | cancel Help

Selecting a Process to Attach

The first thingppp does after arranging to debug the specified process is to stop it. You can
examine and modify an attached process with allib® commands that are ordinarily available
when you start processes witRun’. You can insert breakpoints; you can step and continue; you
can modify storage. If you would rather the process continue running, you magaeériue '
after attachingpbp to the process.

When using Attach to Process ', you should first useOpen Program ’ to specify the
program running in the process and load its symbol table.

When you have finished debugging the attached process, you can usgléhe=> Detach
Process '’ to release it fromppD control. Detaching the process continues its execution. After
‘Detach Process ’, that process andpp become completely independent once more, and you
are ready to attach another process or start one Witim",

You can customize the list of processes shown by defining an alternate command to list pro-
cesses. Seeedit = Preferences = Helpers = ListProcesses ', See Section 6.3.1
[Customizing Attaching to Processes], pagefab details.

6.3.1 Customizing Attaching to Processes

When attaching to a process (seection 6.3 [Attaching to a Process], pagg, ®HD uses gs
command to get the list of processes. This command is defined bgs®mmand resource.

psCommand (class PsCommand) Resource
The command to get a list of processes. Usuplly Depending on your system, useful
alternate values includes -ef andps ux . The first line of the output must either contain a
‘PID' title, or each line must begin with a process ID.

Note that the output of this command is filtered byD; a process is only shown if it can
be attached to. Thepp process itself as well as the process of the inferior debugger are
suppressed, too.

96 Debugging with DDD

6.4 Program Stops

After the program has been started, it runs until one of the following happens:
A breakpoint is reached (séz=ction 5.1 [Breakpoints], page)31
A watched value changes (sBection 5.2 [Watchpoints], page)87
The program is interrupted (s&ection 5.3 [Interrupting], page 38
A signal is received (seBection 6.10 [Signals], page 102
Execution completes.

DDD shows the current program status in the debugger console. The current execution position
is highlighted by an arrow.

If ‘Edit = Preferences = General = Uniconify When Ready ' is set, DDD auto-
matically deiconifies itself when the program stops. This way, you can icomifyduring a lengthy
computation and have it uniconify as soon as the program stops.

6.5 Resuming Execution

6.5.1 Continuing

To resume execution, at the current execution position, click onGbatinue ’ button. Any
breakpoints set at the current execution position are bypassed.

6.5.2 Stepping one Line

To execute just one source line, click on tig&teép ' button. The program is executed until
control reaches a different source line, which may be in a different function. Then, the program is
stopped and control returns tmp.

Warning If you use the Step ’ button while control is within a function that was compiled
without debugging information, execution proceeds until control reaches a function that does have
debugging information. Likewise, it will not step into a function which is compiled without de-
bugging information. To step through functions without debugging information, usé&thpi* ’
button (se&ection 8.2 [Machine Code Execution], page 142

In GDB, the ‘Step ’ button only stops at the first instruction of a source line. This prevents the
multiple stops that used to occur in switch statements, for loops, &tep ” continues to stop if a
function that has debugging information is called within the line.

Also, the ‘Step ’ in GDB only enters a subroutine if there is line number information for the
subroutine. Otherwise it acts like thidext * button.

6.5.3 Continuing to the Next Line

To continue to the next line in the current function, click on tNext * button. This is similar
to ‘'Step ’, but any function calls appearing within the line of code are executed without stopping.

Execution stops when control reaches a different line of code at the original stack level that was
executing when you clicked olNext '

Chapter 6: Running the Program 97

6.5.4 Continuing Until Here

To continue running until a specific location is reached, use @@ntinue Until Here ’
facility from the line popup menu. Se®eection 5.1.4 [Temporary Breakpoints], page f& a
discussion.

6.5.5 Continuing Until a Greater Line is Reached

To continue until a greater line in the current function is reached, click onthgl* ’ button.
This is useful to avoid single stepping through a loop more than once.

‘Until islike ‘Next ’, except that whenUntil ' encounters a jump, it automatically contin-
ues execution until the program counter is greater than the address of the jump.

This means that when you reach the end of a loop after single stepping thougtilit, *’ makes
your program continue execution until it exits the loop. In contrast, clicking\mxt ’ at the end
of a loop simply steps back to the beginning of the loop, which forces you to step through the next
iteration.

‘Until * always stops your program if it attempts to exit the current stack frame.

‘Until * works by means of single instruction stepping, and hence is slower than continuing
until a breakpoint is reached.

6.5.6 Continuing Until Function Returns

To continue running until the current function returns, use #irish ' button. The returned
value (if any) is printed.

6.6 Continuing at a Different Address

Ordinarily, when you continue your program, you do so at the place where it stopped. You can
instead continue at an address of your own choosing.

The most common occasion to use this feature is to back up—perhaps with more breakpoints
set-over a portion of a program that has already executed, in order to examine its execution in more
detail.

To set the execution position to the current location, uSet Execution Position '
from the breakpoint popup menu. This item is also accessible by pressing and holding the
‘Break/Clear ' button?

As a quicker alternative, you can also pressuse button bn the arrow and drag it to a different
location?

4 jpB, PYDB, Perl, and Bash do not support altering the execution position.

> When glyphs are disabled (s€ection 4.4 [Customizing Source], page,idragging the execution posi-
tion is not possible. Set the execution position explicitly instead.

98

Debugging with DDD

int mainfint /* a

i

int 1 = 42;
tree_test(};
has
]1'5t_t95tl[1'];
T+
array_tESt[];
Jeek;
type_test(};

=

> > [> ok

int mainfint /% a

{

int 1 = 42;
Free_tESt{];
i++;
]1'5t_t95t{1'};
1++;
array_test{);
14++:
type_test();

e

int main{int /% a

{

int 1 = 42;
tree_test(};
1++;
list_test{il;
4+
array_test();
i4+;
type_test();

e

Click on arrow, hold mouse button and move to the final position.

Changing the Execution Position by Dragging the Execution Arrow

Moving the execution position does not change the current stack frame, or the stack pointer, or
the contents of any memory location or any register other than the program counter.

Some inferior debuggers (notalilypB) allow you to set the new execution position into a differ-
ent function from the one currently executing. This may lead to bizarre results if the two functions
expect different patterns of arguments or of local variables. For this reason, moving the execution
position requests confirmation if the specified line is not in the function currently executing.

After moving the execution position, click o@bntinue ’to resume execution.

6.7 Examining the Stack

When your program has stopped, the first thing you need to know is where it stopped and how it
got there.

Each time your program performs a function call, information about the call is generated. That
information includes the location of the call in your program, the arguments of the call, and the
local variables of the function being called. The information is saved in a block of data called a
stack frame. The stack frames are allocated in a region of memory called:tthetack.

When your program stops, tme>p commands for examining the stack allow you to see all of
this information.

One of the stack frames iglected by bpD and manyppbb commands refer implicitly to the
selected frame. In particular, whenever you ask for the value of a variable in your program, the
value is found in the selected frame. There are speaa commands to select whichever frame
you are interested in.

6.7.1 Stack Frames

The call stack is divided up into contiguous pieces cadtack frames, or frames for short; each
frame is the data associated with one call to one function. The frame contains the arguments given
to the function, the function’s local variables, and the address at which the function is executing.

Chapter 6: Running the Program 99

When your program is started, the stack has only one frame, that of the funwion This is
called theinitial frame or theoutermost frame. Each time a function is called, a new frame is made.
Each time a function returns, the frame for that function invocation is eliminated. If a function is
recursive, there can be many frames for the same function. The frame for the function in which
execution is actually occurring is called thmermost frame. This is the most recently created of
all the stack frames that still exist.

Inside your program, stack frames are identified by their addresses. A stack frame consists of
many bytes, each of which has its own address; each kind of computer has a convention for choosing
one byte whose address serves as the address of the frame. Usually this address is kept in a register
called theframe pointer register while execution is going on in that frame.

GDB assigns numbers to all existing stack frames, starting with zero for the innermost frame, one
for the frame that called it, and so on upward. These numbers do not really exist in your program;
they are assigned byDB to give you a way of designating stack frames:imB commands.

6.7.2 Backtraces

DDD provides abacktrace window showing a summary of how your program got where it is.
It shows one line per frame, for many frames, starting with the currently executing frame (frame
zero), followed by its caller (frame one), and on up the stack.

To enable the backtrace window, selestdtus =- Backtrace .

£2 DDD: Backtrace Eq
Backtrace
#4 OxB04881e in __crt_dummy__ (3 Calling functions

H#3 0x8048e62 in main (3 aft cxwtest.C:275
H#2 0x8048896 1in tree_test () at cuxtest.C:127

(xB048f8d in Tree::Tres () at cxxtest.C:95 Current frame in source window
#0 Date::Date () at cuxtest.C:d

Called functions

Up Down | Close | Help

Selecting a Frame from the Backtrace Viewer

Using GDB, each line in the backtrace shows the frame number and the function name. The
program counter value is also shown—unless you useti'ecommand Set print address
off . The backtrace also shows the source file name and line number, as well as the arguments to
the function. The program counter value is omitted if it is at the beginning of the code for that line
number.

100 Debugging with DDD

6.7.3 Selecting a Frame

Most commands for examining the stack and other data in your program work on whichever
stack frame is selected at the moment. Here are the commands for selecting a staék frame.

In the backtrace window, you caselectan arbitrary frame to move from one stack frame to
another. Just click on the desired frame.

The ‘Up’ button selects the function that called the current one—that is, it moves one frame up.

The ‘Down button selects the function that was called by the current one—that is, it moves one
frame down.

You can also directly type thgp anddown commands at the debugger prompt. Typi@g+Up)
and (CtrT+Down), respectively, will also move you through the stack.

‘Up’ and ‘Down actions can be undone vi&dit = Undo’.

6.8 “Undoing” Program Execution

If you take a look at theEdit = Undo’ menu item after an execution command, you'll find
thatppp offers you to undo execution commands just as other commands. Does this meartthat
allows you to go backwards in time, undoing program execution as well as undoing any side-effects
of your program?

Sorry—we must disappoint youbDD cannot undo what your program did. (After a little bit
of thought, you'll find that this would be impossible in general.) Howewen) can do something
different: it can shovpreviously recorded stated your program.

After “undoing” an execution command (vi&dit = Undo’, or the ‘Undo’ button), the exe-
cution position moves back to the earlier position and displayed variables take their earlier values.
Your program state is in fact unchanged, bub gives you aviewon the earlier state as recorded
by DDD.

In this so-calledhistoric mode, most normalbpp commands that would query further infor-
mation from the program are disabled, since the debugger cannot be queried for the earlier state.
However, you can examine the current execution position, or the displayed variables. Wsilog *
and ‘Redo’, you can move back and forward in time to examine how your program got into the
present state.

To let you know that you are operating in historic mode, the execution arrow gets a dashed-line
appearance (indicating a past position); variable displays also come with dashed lines. Furthermore,
the status line informs you that you are seeing an earlier program state.

Here’s how historic mode works: each time your program stopsy collects the current exe-
cution position and the values of displayed variables. Backtrace, thread, and register information is
also collected if the corresponding dialogs are open. When “undoing” an execution conumand,
updates its view from this collected state instead of querying the program.

If you want to collect this information without interrupting your program—within a loop, for
instance—you can place a breakpoint with an assoc@irtt command (se&ection 5.1.8 [Break-
point Commands], page 35When the breakpoint is hibpp will stop, collect the data, and execute
the ‘cont ' command, resuming execution. Using a latgndo’, you can step back and look at
every single loop iteration.

6 Perl does not allow changing the current stack frame.

Chapter 6: Running the Program 101

To leave historic mode, you can udeedo’ until you are back in the current program state.
However, anypbb command that refers to program state will also leave historic mode immediately
by applying to the current program state instead. For instatlg Jeaves historic mode immedi-
ately and selects an alternate frame in the restored current program state.

If you want to see the history of a specific variable, as recorded during program stops, you can
enter theopb command

graph history name

This returns a list of all previously recorded values of the variahlee, using array syntax.
Note thatname must have been displayed at earlier program stops in order to record values.

6.9 Examining Threads

In some operating systems, a single program may have more thdhreadof execution. The
precise semantics of threads differ from one operating system to another, but in general the threads
of a single program are akin to multiple processes—except that they share one address space (that
is, they can all examine and modify the same variables). On the other hand, each thread has its own
registers and execution stack, and perhaps private memory.

For debugging purposespb lets you display the list of threads currently active in your program
and lets you select theurrent thread—the thread which is the focus of debuggimgpp shows all
program information from the perspective of the current thread.

£: DDD: Threads
Threads
Click on group to toggle view Group system: 5 3 A
1. Clock cond. waiting
2. Idle thread running
3. fsync Garbage Collector cond. waiting
4. Finalizer thread cond. waiting
5. Debugger agent running
. Breakpoint handler cond. waiting
7. Step handler cond. waiting
Group main:
Current thread 8. main cond. waiting /
Change thread properties Suspend | Resume Close Help

Selecting Threads

To view all currently active threads in your program, sel&tatus = Threads '. The cur-
rent thread is highlighted. Select any thread to make it the current thread.

UsingJpB, additional functionality is available:

T Currently, threads are supporteddns andips only.

102 Debugging with DDD

e Select athread groupto switch between viewing all threads and the threads of the selected
thread group;

e Click on ‘Suspend ' to suspend execution of the selected threads;

e Click on ‘Resume€ to resume execution of the selected threads.

For more information on threads, see tla andcpB documentation (segsction “Debugging
Programs with Multiple Threads” iDebugging with GDB).

6.10 Handling Signals

A signal is an asynchronous event that can happen in a program. The operating system defines

the possible kinds of signals, and gives each kind a name and a humber. For exampies,in
SIGINT is the signal a program gets when you type an interf8{§ESEGVis the signal a program
gets from referencing a place in memory far away from all the areas irBUS&LRMoccurs when
the alarm clock timer goes off (which happens only if your program has requested an alarm).

Some signals, includin§IGALRM are a normal part of the functioning of your program. Oth-
ers, such aSIGSEGYV indicate errors; these signals dagal (kill your program immediately) if
the program has not specified in advance some other way to handle the SYBEIT does not
indicate an error in your program, but it is normally fatal so it can carry out the purpose of the
interrupt: to kill the program.

GDB has the ability to detect any occurrence of a signal in your program. You camniglin
advance what to do for each kind of signal.

Normally, DDD is set up to ignore non-erroneous signals BKEGSALRM(so as not to interfere
with their role in the functioning of your program) but to stop your program immediately whenever
an error signal happens. /D, you can view and edit these settings \@&dtus = Signals ’

‘Status = Signals ’pops up a panel showing all the kinds of signals and khow has been
told to handle each one. The settings available for each signal are:

Stop If set, cbB should stop your program when this signal happens. This also implies
‘Print ' being set.

Print If set, cDB should print a message when this signal happens.
If unset,abpB should not mention the occurrence of the signal at all. This also implies
‘Stop ’ being unset.

Pass If set, cDB should allow your program to see this signal; your program can handle the
signal, or else it may terminate if the signal is fatal and not handled.

If unset,cbpB should not allow your program to see this signal.

Chapter 6: Running the Program 103

£: DDD: Signal Handling E3

GDE Signal Handling

Hangup ____________________ 7 Stop |7 Print [T Pass M j A
ntemupt ___________________ 7 Stop I” Print _I Pass M j J
Quit - . I Stop |7 Print 7 Pass Send| ?|
Megal instruction ____________. I Stop |~ Print 7 Pass Send| ?|
Trace/reakpoint trap .. I Stop |7 Print _i Pass Send| ?|
Aported - _________________ I Stop I Print 7 Pass Send| ?|
Emulationtrap ______________. 7 Stop I” Print 7 Pass MI j
Arithmetic exception ___ . . _____ 7 Stop |7 Print I© Pass ml ﬂ
Killed - oot I Stop | Print 7 Pass Send| 2|
BUS BIPOF - _ e 7 Stop [T Print |7 Pass ml j
Segmentation fault ___________ I~ Stop I~ Print |7 Pass ﬂl j
Bad systemcall .. ____ .. __._. 7 Stop I7 Print I” Pass ml ﬂ v

OK | it | Help |

GDB Signal Handling Panel (Excerpt)

The entry All Signals '’ is special. Changing a setting here affeatssignals at once-
except those used by the debugger, typic8lIg TRAPandSIGINT .

To undo any changes, udedit =- Undo’. The ‘Reset ' button restores the saved settings.

When a signal stops your program, the signal is not visible until you continue. Your program
sees the signal then, iPass’ is in effect for the signal in questioat that time In other words,
afterGDB reports a signal, you can change tRass’ setting in ‘Status = Signals ’to control
whether your program sees that signal when you continue.

You can also cause your program to see a signal it normally would not see, or to give it any
signal at any time. TheSend’ button will resume execution where your program stopped, but
immediately give it the signal shown.

On the other hand, you can also prevent your program from seeing a signal. For example, if
your program stopped due to some sort of memory reference error, you might store correct values
into the erroneous variables and continue, hoping to see more execution; but your program would
probably terminate immediately as a result of the fatal signal once it saw the signal. To prevent this,
you can resume execution usingdmmands=- Continue Without Signal ",

Signal settings are not saved across DDD invocations, since changed signal settings are normally
useful within specific projects only. Instead, signal settings are saved with the current session, using
‘File = Save Session As '’

104 Debugging with DDD

6.11 Killing the Program

You can kill the process of the debugged program at any time usindKithe ° button.

Killing the process is useful if you wish to debug a core dump instead of a running process.
ignores any core dump file while your program is running.

The ‘Kill " button is also useful if you wish to recompile and relink your program, since on
many systems it is impossible to modify an executable file while it is running in a process. In this
case, when you next click ofRun’, ¢pB notices that the file has changed, and reads the symbol
table again (while trying to preserve your current debugger state).

Chapter 7: Examining Data 105

7 Examining Data

DDD provides several means to examine data.

e The quickest way to examine variables is to move the pointer on an occurrence in the source
text. The value is displayed in the source line; after a second, a popup window (edlled
tip) shows the variable value. This is useful for quick examination of several simple values.

e |f you want to refer to variable values at a later time, you pant the value in the debugger
console. This allows for displaying and examining larger data structures.

e |f you want to examine complex data structures, you daplay them graphically in the data
window. Displays remain effective until you delete them; they are updated each time the
program stops. This is useful for large dynamic structures.

¢ |f you want to examine arrays of numeric values, you pan them graphically in a separate
plot window. The plot is updated each time the program stops. This is useful for large numeric
arrays.

e Using GDB or DBX, you can als@examine memory contents in any of several formats, inde-
pendently of your program’s data types.

7.1 Showing Simple Values using Value Tips

To display the value of a simple variable, move the mouse pointer on its name. After a second, a
small window (calledvalue tip) pops up showing the value of the variable pointed at. The window
disappears as soon as you move the mouse pointer away from the variable. The value is also shown
in the status line.

£3 DDD: fusriusers/sts1izellerfddd/dddfjtests]
Hle Edit View Program Commands

0| £

Lookup |

public class jtest £

Tree tree;

-’@ tree = new Treel?,
tree.left_= new Treeld, . _
tree. left T new Tree(s, Move pointer on item

The value tip shows its value

5 treeleft = null

Displaying Simple Values using Value Tips

You can disable value tips viaEtit = Preferences = General = Automatic
display of variable values as popup tips ",

106 Debugging with DDD

You can disable displaying variable values in the status linekifit' = Preferences =
General = Automatic display of variable values in the status line ’

These customizations are tied to the following resources:
valueTips (class Tips) Resource

Whether value tips are enablead’, default) or not (off ’). Value tips affectbpbp perfor-
mance and may be distracting for some experienced users.

valueDocs (class Docs) Resource
Whether the display of variable values in the status line is enabted, (default) or not
(‘off).

= Automatic

You can turn off value tips viaEdit = Preferences = General

Display of Variable Values '

7.2 Printing Simple Values in the Debugger Console

The variable value can also be printed in the debugger console, making it available for future
operations. To print a variable value, select the desired variable by clickingge button bn its
name. The variable name is copied to the argument field. By clickindttiat* ’ button, the value
is printed in the debugger console. The printed value is also shown in the status line.

As a shorter alternative, you can simply pressuse button ®n the variable name and select
the ‘Print ’item from the popup menu.

£ DDD: fusrfusersists1/zellerfddd/dddfjtestitest.java
Fle Edit View Program Commands Status Source Data Help
(]:Itree.'left.rightﬁ Toae ; 23 @ B
G Lookup Find:= Break Laich Print Display Show Rotate Set Undisn
5 4
Tree tree;
o) tree = new Treel(?, "Ada"); /¢ Byron Lovelace Run
tree. left = new Tree(l, "Grace"l: Ff WMurray Hopper
tree, left.left = new Tree(5, "Tudy"); 74 Clapp interupt |
& tree.left, right] = now Traare “karhloan®); // McNUTLY Stepl Stepi|
tree.right = Print tree, left. right H—Ka i Select ‘Print’ on item
tree.date.set (2 Display tree.left. right
? Erea. date.set(d tree. left. right
B Dlsplay.tree.1gft.r1ght Bl
What is tree. left.right : | é
Back | Pwd Ty
main[1] print tree.left Lookup tree.left.right : : i i
tree.left.right = null S — Euit | Make | The value is printed
main[1] T Break at tree.left. right 1 in the debugger console
A Print the value of the selec Clear at tree.Teft. ri aht ‘F

Displaying Simple Values in the Debugger Console

Chapter 7: Examining Data 107

In GDB, the Print ' button generatesjrint command, which has several more options. See
section “Examining Data” imebugging with GDB, for GDB-specific expressions, variables, and
output formats.

7.3 Displaying Complex Values in the Data Window

To explore complex data structures, you dasplay them permanently in théata window The
data window displays selected data of your program, showing complex data structures graphically.
It is updated each time the program stops.

7.3.1 Display Basics

This section discusses how to create, manipulate, and delete displays. The essentials are:
e Click on ‘Display 'to display the variable in() .
e Click on a display to select it.
e Click on ‘Undisplay ' to delete the selected display.

7.3.1.1 Creating Single Displays

To create a new display showing a specific variable, select the variable by cliokinge button
1 on its name. The variable name is copied to the argument field. By clickingDisplay
button, a new display is created in the data window. The data window opens automatically as soon
as you create a display.

£2 DDD: Program Data W=l E2
File: Edit. View Program Data Help
(e | ¥ 2 8 o &

Display Hide Roiais et Undizp

""""" O |3: *list->next
value = 86

self 0xB804ah&a
next Ox804abag||

1: list
(List *) 0OxB804ab78

Scroll the data display

Displaying Data

As a shorter alternative, you can simply pressuse button ®n the variable name and select
‘Display ' from the popup menu.
As an even faster alternative, you can also double-click on the variable name.

As another alternative, you may also enter the expression to be displayed in the argument field
and press theDisplay ' button.

108 Debugging with DDD

Finally, you may also type in a command at the debugger prompt:

graph display expr [clustered] [at (x, ¥
[dependent on display] [[now or] when in scope]

This command creates a new display showing the value of the expresgionThe optional
parts have the following meaning:

clustered
If given, the new display is created in a cluster. Saetion 7.3.1.9 [Clustering],
page 114for a discussion.

at(x, y) Ifgiven, the new display is created at the positiany). Otherwise, a default position
is assigned.

dependent on display
If given, an edge from the display numbered or nandexplay to the new display
is created. Otherwise, no edge is created. Segion 7.3.4.1 [Dependent Values],
page 120for details.

when in scope

now or when in scope
If “whenin ’ is given, the display creation ideferred until execution reaches the
givenscope (a function name, as in the backtrace output).

If “now or when in ' is given, ppD first attempts to create the display immediately.
The display is deferred only if display creation fails.

If neither ‘when in ’ suffix nor ‘now or when in ’ suffix is given, the display is cre-
ated immediately.

7.3.1.2 Selecting Displays

Each display in the data window hasitée bar containing thadisplay numbegand the displayed
expression (theisplay namg Below the title, thedisplay valuas shown.

You can select single displays by clicking on them witbuse button.1

You canextendan existing selection by pressing tt8hift key while selecting. You can also
togglean existing selection by pressing t@hift key while selecting already selected displays.

Single displays may also be selected by using the arrow kBysDown), LCeff), and(Right.

Multiple displaysare selected by pressing and holdinguse button $omewhere on the window
background. By moving the pointer while holding the button, a selection rectangle is shown; all
displays fitting in the rectangle are selected when mouse button 1 is released.

If the Shifh key is pressed while selecting, the existing selectiaxtended

By double-clicking on a display title, the display itself and all connected displays are automati-
cally selected.

Chapter 7: Examining Data

109

Selection rectangle

£2 DDD: Program Data M=l B3
Hle Edit View Program Data Help
(): I: Di=plast % F:f‘-:!‘_‘ ;zj-? UI%:I:ZZ'
|2 *list :‘: 3: *list—>next
1: list value = 85 value = BB
(List *) 0x804ab78 self = 0xB04ah?8 self = 0xB04abas
nest = =

0x804ab88 \i : next 0x804ah98

Selecting Multiple Displays

7.3.1.3 Showing and Hiding Details

Aggregate values (i.e. records, structs, classes, and arrays) can be estpamded that is,

displaying all details, ohidden that is, displayed ag.-}

To show details about an aggregate, select the aggregate by cliokinge button dn its name
or value and click on theShow button. Details are shown for the aggregate itself as well as for all

contained sub-aggregates.

To hide details about an aggregate, select the aggregate by cliokinge button dn its name
or value and click on theHide ' button.

£2 DDD: Program Data M=l E3
Hle Edit View Program Data Help
0 | twadin 2 Q&6 &/
Displa Show Rotate Set Undisp
.9: : t'..\'od-'irn- ﬁ: -tv.;od.im.

|

. New Display -

Hidden details

[0420496d4 "Pioneering” [0x80496dF "women"

0=804965 "in"

Dispiay 20

8 "computer' |DyB495f1 "science"|0x80438F5 "1"

Showr All
Rotate
Set Value...

Undisplay

Detailed view Select and show detail

Showing Display Detail

When pressing and holdingouse button dn the Show/Hide ' button, a menu pops up with
even more alternatives:

110 Debugging with DDD

Show More ()
Shows details of all aggregates currently hidden, but not of their sub-aggregates. You
can invoke this item several times in a row to reveal more and more details of the
selected aggregate.

Show Just ()
Shows details of the selected aggregate, but hides all sub-aggregates.

Show All ()
Shows all details of the selected aggregate and of its sub-aggregates. This item is
equivalent to theShow button.

Hide () Hide all details of the selected aggregate. This item is equivalent télitle * button.

As a faster alternative, you can also pressuse button 8n the aggregate and select the appro-
priate menu item.

As an even faster alternative, you can also double-cfickise button bn a value. If some part
of the value is hidden, more details will be shown; if the entire value is shown, double-clicking will
hidethe value instead. This way, you can double-click on a value until you get the right amount of
details.

If all details of a display are hidden, the display is calé@dbled; this is indicated by the string
‘(Disabled) .

Displays can also be disabled or enabled vizb® command, which you enter at the debugger
prompt:

graph disable display displays. . .
disables the given displays.
graph enable display displays. . .
re-enables the given displays.
In both commandsfisplays. . . is either

e a space-separated list of display numbers to disable or enable, or

e a single display name. If you specify a display by name, all displays with this name will be
affected.

Use Edit = Undo’ to undo disabling or enabling displays.

7.3.1.4 Rotating Displays
Arrays, structures and lists can be oriented horizontally or vertically. To change the orientation
of a display, select it and then click on tHedtate ' button.

As a faster alternative, you can also pregsuse button 8n the array and seledRbtate ’from
the popup menu.

Chapter 7: Examining Data 111

£x DDD: Program Data M=l B3
Fle Edit View Program Data Help
(§F I date_ptrs 2 A 6 3 oy

Displas* Hide Rotate Sat Undisp

12: date ptrs

o

" [13: date_ptrs
* |l_0x804ab78]0x804ab30 | 0x804abal | 0x804abcD]| ~

i C0 e e
. Mew Display - | .

Hide All

Rotate Select and Rotate
Set Value...

Undisplay

Rotating an Array

If a structure or list is oriented horizontallypp automatically suppresses the member names.
This can be handy for saving space.

The last chosen display orientation is used for the creation of new displays. If you recently
rotated an array to horizontal orientation, the next array you create will also be oriented horizontally.
These settings are tied to the following resources:

arrayOrientation (class Orientation) Resource
How arrays are to be oriented. Possible values atmVERTICAL (default) and
‘XmHORIZONTAL

showMemberNames(class ShowMemberNames) Resource
Whether to show struct member names or not. Defautins.

structOrientation (class Orientation) Resource
How structs are to be oriented. Possible values afmVERTICAL (default) and
‘XMHORIZONTAL

7.3.1.5 Displaying Local Variables

You can display all local variables at once by choosirigata = Display Local
Variables ’. When usingbBX, XDB, JDB, or Perl, this displays all local variables, including the
arguments of the current function. When usangs or PYDB, function arguments are contained in
a separate display, activated [ydta = Display Arguments .

The display showing the local variables can be manipulated just like any other data display.
Individual variables can be selected and dereferenced.

112 Debugging with DDD

£1 DDD: Program Data M= E3
Fle Edit View Program Data Help
Q: | thig 2 o7& u
Dispek Hide Hotsis Set Urdi=p
[Locals - Local arguments
= (Tree *) Ox80daeed e e
W Display *() Dereference
; n. = l].x8.|]4!llﬁl'-%8 g m-ja Hew Display - k_\‘—-—_kz ehis : via popup menu
EErma— T value = :
Hide All . || name = 0x80496e8 "Ada"yl Dereferenced pointer
Hndnts date = i...} |
left =0x0
SetValue... |3] |Lright = 0x0
Undisplay Lz A

Dereferencing a Local Variable

7.3.1.6 Displaying Program Status

You can create a display from the output of an arbitrary debugger command. By entering
graph display ° command'
the output ofcommand is turned into astatus displayipdated each time the program stops.
For instance, the command
graph display ‘where’
creates a status display nam&dHere’ that shows the current backtrace.
If you are usingeDB, DDD provides a panel from which you can choose useful status displays.

Select Data = Status Displays "and pick your choice from the list.

GDB Status Displays
Click here... # Execution status of theprogram ____________________ j Al

.l List of all registers and theircontents ____ j

... to enable or disable this status display SR R Z
I7 Source files inthe progranmy _____ __ _ ________________ j
| Expressions to display when program stops ____ j
I Information about the current source file j

: DDD: Program Data

hle Edit View FProgram Data _1 Exceptions that can be caught in the current stack frame _ j
O: “info program? - Argqument vaniables of current stackframe __ j
.| Local variables of current stack frame _ ___ j

 [Program || 4 Anabout selected stack frame _____________________ j

. |Using the running image of child process 31764.| | | .| Backirace of the stack ﬂ
Program stopped at Ox8048dcc. |} SoTommmmmmmmmmnmnnmnnmnnns
“|It stopped at breakpoint 2.

‘| Sources OK |

‘|Source files for which symbols have been read in:

: fusrfusers/ststfzeller/ddd/ddd/ cuntest. C

‘|Source files for which symbols will be read in on demand:

Activating Status Displays

Chapter 7: Examining Data 113

Refreshing status displays at each stop takes time; you should delete status displays as soon as
you don’t need them any more.

7.3.1.7 Refreshing the Data Window

The data window is automatically updatedrefireshed each time the program stops. Values that
have changed since the last refresh are highlighted.

However, there may be situations where you should refresh the data window explicitly. This is
especially the case whenever you changed debugger settings that could affect the data format, and
want the data window to reflect these settings.

You can refresh the data window by selectibmta = Refresh Displays
As an alternative, you can presmuse button 8n the background of the data window and select
the ‘Refresh Displays '’ item.
Typing
graph refresh

’

at the debugger prompt has the same effect.

7.3.1.8 Display Placement

By default, displays are created frawp to bottom—that is, each new display is placed below
the downmost one. You can change this settintetoto right via ‘Edit = Preferences =
Data = Placement =- Leftto right '

fdoDD Preferences ____________________[B§
General | Source || Data Startup | Fonts | | Hepers |

Show 7 Edge Hints [~ Edge Annotations i Titles of Dependent Displays

Placement - Top to bottom - Leftto right 1 Clustered
Layout 1 Compact .1 Automatic

7 Detect Aliases (shared data structures)

I” Display Two-Dimensional Arrays as Tables

T Close Data Window when Deleting last Display

7' Auto-Align Displays on Nearest Grid Point
16

I : 7

Grid Size

oK | Resat Help |

Data Preferences

This setting is tied to the following resource:

114 Debugging with DDD

displayPlacement(class Orientation) Resource
If this is ‘XmVERTICAL (default), bpbD places each new independent display below the
downmost one. If this isXmHORIZONTALeach new independent display is placed on the
right of the rightmost one.

Note that changing the placement of new displays also affects the placenteypefdent dis-
plays(seeSection 7.3.4.1 [Dependent Values], page)14f top to bottommode, dependent dis-
plays are created on the right of the originating displaylefhto right mode, dependent displays
are created on the below the originating display.

7.3.1.9 Clustering Displays

If you examine several variables at once, having a separate display for each of them uses a lot

of screen space. This is wpD supportsclusters. A cluster merges several logical data displays
into one physical display, saving screen space.

There are two ways to create clusters:

e You can create clustersanually This is done by selecting the displays to be clustered and
choosing Undisp = Cluster () '. This creates a new cluster from all selected displays.
If an already existing cluster is selected, too, the selected displays will be clustered into the
selected cluster.

e You can create a clusteutomaticallyfor all independent data displays, such that all new
data displays will automatically be clustered, too. This is achieved by enalitidity ‘=
Preferences = Data = Placement = clustered .

Displays

1: uni 2: guni 3: pi

ii = 1 3.14159274

uni =

ii
- bitl
bit2

—w

I
~—~ W

-
=
Il
N IRl

. RS 4: sqrt2
o 1.4142135623730951

3.14159274
.4142135623730951

]
=}

guni

pi
sqrt2

[}
—

Clustered and Unclustered Displays

Displays in a cluster can be selected and manipulated like parts of an ordinary display; in par-
ticular, you can show and hide details, or dereference pointers. However, edges leading to clustered

displays can not be shown, and you must either select one or all clustered displays.
Disabling a cluster is callednclustering and again, there are two ways of doing it:

e You can uncluster displaysanually by selecting the cluster and choosirigndisp =
Uncluster () '

e You can uncluster all current and future displays by disabligit = Preferences =
Data = Placement = clustered ’

Chapter 7: Examining Data 115

7.3.1.10 Creating Multiple Displays

To display several successive objects of the same type (a section of an array, or an array of
dynamically determined size), you can use the notatfami.. to’ in display expressions.

from andto are numbers that denote the first and last expression to display. Thus,
graph display argv[0..9]
creates 10 new displays faargv[0] ’, ‘argv[l] ', ...,‘argv[9] '. The displays are clustered

automatically (se&ection 7.3.1.9 [Clustering], page J)18uch that you can easily handle the set
just like an array.

The ‘from.. to’ notation can also be used multiple times. For instance,
graph display 1.5 * 1..5
creates a handy small multiplication table.

The ‘from.. to’ notation creates several displays, which takes time to create and update. If you
want to display only a part of an arraggray slicesare a more efficient way. Segection 7.3.2.1
[Array Slices], page 11,7for a discussion.

7.3.1.11 Editing all Displays

You can view the state of all displays by selectim@pta = Displays . This invokes the
Display Editor.

£* DDD: Program Data

File. Edit View Program Data Help

i G - = —
(): | *1ist—snext—rnext—rnext A 2 o
2 Display Hide Rotais Set Uhdisp

“|2: *list |3: *list->next
1: list | | value =85 value = 86
(List *) Ox804aee8 self = Oxd0daeed self = 0x804aefa
g next = OxB04aef8|| - next = DxB04af08
'|Locals = : :
| Lo 2 R < 0DD: Display Editor
list = (List *) DxB04aee8] LIl B x|
e _‘_ { < § !
Displa&!:. Dirsgik Skow Hide: Set Undisp
Num Expression State Scope Address
=1: “info locals” enabled
1: Tlist ehabled list_test O=bffffasc
2: *list enahled list_test 0x804aeed
3: *list—rnext enabled list_test 0Owx804aefd
4: *list—rnext—inext enabled list_test OxB04af0s
Selected Display
E: *list alias of 2 Tist_test 0xB04aees

Close Help |

The Display Editor

116 Debugging with DDD

The Display Editor shows the properties of each display, using the following fields:

‘Num The display number.

‘Expression '’
The displayed expression.

‘State ’ One of

‘enabled ’
Normal state.

‘disabled
Disabled; all details are hidden. Usghow to enable.

‘not active
Out of scope.

‘deferred ’
Will be created as soon as itScope’ is reached (se&ection 7.3.1.1
[Creating Single Displays], page 107

‘Clustered
Part of a cluster (se&ection 7.3.1.9 [Clustering], page 114 Use
‘Undisp = Uncluster ’to uncluster.

‘alias of display’
A suppressed alias of displalysplay (seeSection 7.3.4.3 [Shared Struc-
tures], page 121

‘Scope’ The scope in which the display was created. For deferred displays, this is the scope in
which the display will be created.

‘Address ’
The address of the displayed expression. Used for resolving aliasés(sée 7.3.4.3
[Shared Structures], page 121

7.3.1.12 Deleting Displays

To delete a single display, select its title or value and click on thedisp ’ button. As an
alternative, you can also presuse button 8n the display and select thendisplay *item.

When a display is deleted, its immediate ancestors and descendants are automatically selected,
so that you can easily delete entire graphs.

If you have selected only part of a display, clicking on thiadisp " button allows you tesup-
pressthis part—by applying th&uppress Valugbeme on the part. You'll be asked for confirmation
first. SeeSection 7.3.5.1 [Using Data Themes], page,fabdetails.

Chapter 7: Examining Data 117

value =17
_name = 0x804a8c0O "Ada"
_left = 0x804eb80
_right = 0x804ecl0
left_thread = false
2: tree %) right_thread = false
(Tree *) 0x804eb50 day_of_week = Thu Normal Data Display
day =1
date = month =1
year = 1970
_vptr. = 0x804ba84
shared = 4711
value =7
2: tree) || _name = 0x804a8c0 "Ada" Suppressed members
(Tree *) 0x804eb50 Tl _left = 0x804eb80
_right = 0x804ecl0

Suppressing Values

To delete several displays at once, use thedisp ’ button in the Display Editor (invoked via
‘Data = Displays). Select any number of display items in the usual way and delete them by
pressing Undisp .

As an alternative, you can also usemp command:

graph undisplay displays. . .
Here,displays. . . is either
e a space-separated list of display numbers to disable or enable, or

e a single display name. If you specify a display by name, all displays with this name will be
affected.

If you are using stacked windows, deleting the last display from the data window also automat-
ically closes the data window. (You can change this #dit = Preferences = Data =
Close data window when deleting last display ")

If you deleted a display by mistake, udedit = Undo’ to re-create it.

Finally, you can also cut, copy, and paste displays usingGg", * Copy’, and ‘Paste ' items
from the Edit ' menu. The clipboard holds theommandsised to create the display®dste ’
inserts the display commands in the debugger console. This allows you to save displays for later
usage or to copy displays across multipleD instances.

7.3.2 Arrays

DDD has some special features that facilitate handling of arrays.

7.3.2.1 Array Slices

It is often useful to print out several successive objects of the same type in memdiye a
(section) of an array, or an array of dynamically determined size for which only a pointer exists in
the program.

118 Debugging with DDD

UsingDDD, you can display slices using th&om.. to’ notation (se€section 7.3.1.10 [Creating
Multiple Displays], page 115 But this requires that you already kndftom and to; it is also
inefficient to create several single displays. If you asss, you have yet another alternative.

Using GDB, you can display successive objects by referring to a contiguous span of memory as
anartificial array, using the binary operato@. The left operand of @ should be the first element
of the desired array and be an individual object. The right operand should be the desired length
of the array. The result is an array value whose elements are all of the type of the left argument.
The first element is actually the left argument; the second element comes from bytes of memory
immediately following those that hold the first element, and so on.
Here is an example. If a program says
int *array = (int *) malloc (len * sizeof (int));
you can print the contents afray with
print array[0]@len
and display the contents with
graph display array[0O]@len
The general form of displaying an array slice is thus
graph display array| first]@nelems
wherearray is the name of the array to displdist is the index of the first element, amélems is
the number of elements to display.

The left operand of @ must reside in memory. Array values made wi@@ in this way behave
just like other arrays in terms of subscripting, and are coerced to pointers when used in expressions.

7.3.2.2 Repeated Values

Using GDB, an array value that is repeated 10 or more times is displayed only once. The value
is shown with a<nx>" postfix added, whera is the number of times the value is repeated. Thus,
the display 0x0 <30x> ’ stands for 30 array elements, each with the valxd®". This saves a lot
of display space, especially with homogeneous arrays.

£3 DDD: Program Data =] E3

Hle Edit View Program Data Help

0 | *ar 1] ; 2O

: Displey Hide Rotadis et Undisp

(I | A T T I T T T e T 2+ i e o s o o

Oxd oo o5 s s s s om omomomowomowomowomow o all = & s oo
Ox80d4ad2e| - - - - 0 0 /-'E'H\ """ |
0x0_<48x>)" |3: ar[1] T dennd] || 0 B Repeated Value
0x804adfofl | Cint *) Ox80dad2c| 11 sof
Du80dadfy| a0
Ox0 47=3 0 cg=l
oahdaehd|l: & o o« s s owowowowow s owowowowowowow 2111 I

Displaying Repeated Array Values

Chapter 7: Examining Data 119

The defaultcpB threshold for repeated array values is 10. You can change itBda ‘' =
GDB Settings = Threshold for repeated print elements ". Setting the threshold to
0 will causeaDB (andDpDD) to display each array element individually. Be sure to refresh the data
window via ‘Data = Refresh Displays ' after a change imDB settings.

You can also configurepp to display each array element individually:

expandRepeatedValuegclass ExpandRepeatedValues) Resource
GDB can print repeated array elements asgalie <repeated n times> . If
‘expandRepeatedValues ' is ‘on’, bpD will display n instances ofvalue instead. If
‘expandRepeatedValues '’ is ‘off ' (default), ppp will display value with ‘<nx>’
appended to indicate the repetition.

7.3.2.3 Arrays as Tables

By default, bpD lays out two-dimensional arrays as tables, such that all array elements are
aligned with each othér. To disable this feature, unseEdit = Preferences = Data =
Display Two-Dimensional Arrays as Tables ". This is tied to the following resource:

align2dArrays (class Align2dArrays) Resource
If *on’ (default), DDD lays out two-dimensional arrays as tables, such that all array elements
are aligned with each other. 16ff ’, DDD treats a two-dimensional array as an array of
one-dimensional arrays, each aligned on its own.

7.3.3 Assignment to Variables

During program execution, you can change the values of arbitrary variables.

To change the value of a variable, enter its namd)in—for instance, by selecting an occur-
rence or a display. Then, click on th&ét ’ button. In a dialog, you can edit the variable value at
will; clicking the ‘OK or * Apply ' button commits your change and assigns the new value to the
variable.

L This requires that the full array size is known to the debugger.
2 jps 1.1 does not support changing variable values.

120 Debugging with DDD

£: DDD: Program Data =] B3
File Edit View Program Data Help |
ol T s ®Bles
(- I P nﬁ% % nu';:ts_- %g Undizp Select to set

. |5et the valus of ()]

g e I | !
2. 14159274 [ke | I

|i3- 4189204 4 Enter new value here

Changing Variable Values

To change a displayed value, you can also sefget Value ’menu from the data popup menu,
If you made a mistake, you can ugedit =- Undo’ to re-set the variable to its previous value.

7.3.4 Examining Structures

Besides displaying simple valuasbp can also visualize thBependencies between values—
especially pointers and other references that make up complex data structures.

7.3.4.1 Displaying Dependent Values

Dependent displays are created from an existing display. The dependency is indicated by an
edge leading from the originating display to the dependent display.

To create a dependent display, select the originating display or display part and enter the depen-
dent expression in th€): *argument field. Then click on théisplay ’ button.

Using dependent displays, you can investigate the data structure of a tree for example and lay it
out according to your intuitive image of the tree data structure.

By default, pDDD does not recognize shared data structures (i.e. a data object referenced by
multiple other data objects). Séection 7.3.4.3 [Shared Structures], page, fardetails on how
to examine such structures.

7.3.4.2 Dereferencing Pointers

There are special shortcuts for creating dependent displays showing the value of a dereferenced
pointer. This allows for rapid examination of pointer-based data structures.

To dereference a pointer, select the originating pointer value or name and click @igpé *’
button. A new display showing the dereferenced pointer value is created.

As a faster alternative, you can also pressuse button ®n the originating pointer value or
name and select th®isplay * ' menu item.

Chapter 7: Examining Data 121

As an even faster alternative, you can also double-cliokise button bn the originating pointer
value or name. If you preggir) while double-clicking, the display will be dereferendedplace-
that is, it will be replaced by the dereferenced display.

The ‘Display *() ' function is also accessible by pressing and holding Bisplay ’ button.

7.3.4.3 Shared Structures

By default,ppD does not recognize shared data structures—that is, a data object referenced by
multiple other data objects. For instance, if two point@s' ‘and ‘p2’ point at the same data object
‘d’, the data displaysd’, ‘ *p1 ', and *p2 ' will be separate, although they denote the same object.

DDD provides a special mode which makes it detect these situations.recognizes if two or
more data displays are stored at the same physical address, and if this is so, mergesaihthese
into one single data display, tlogiginal data display This mode is calledilias Detection it is
enabled viaData = Detect Aliases .

When alias detection is enablaoihp inquires the memory location (tre@dres$ of each data
display after each program step. If two displays have the same address, they are merged into one.
More specifically, only the one which has least recently changed remaireigih®al data display;
all other aliases arsuppressed.e. completely hidden. The edges leading to the aliases are replaced
by edges leading to the original data display.

An edge created by alias detection is somewhat special: rather than connecting two displays
directly, it goes through aadge hint, describing an arc connecting the two displays and the edge
hint.

Each edge hint is a placeholder for a suppressed alias; selecting an edge hint is equivalent to
selecting the alias. This way, you can easily delete display aliases by simply selecting the edge hint
and clicking on Undisp .

£: DDD: Program Data =] E3

File Edit View Program Data Help

();I]ist—>next—>next—>nexﬁ é,kv E‘; & -ﬁ

. Disp# Hide Rotats Set undiso
e |2 *1ist |31 *list->next
1 Tist | [wvalue = 85 value =86 ||
(List *) Dx804aeel self = Ox804aeced self = OxB04aefd

¢ next, = OxB04aefB8|| = next = OxBO4afoB|| =~

......... /E/\:‘
"|Locals 3‘“_h-____4: *list—onext-—>next| = =
\list = (List *) Ox804aee8| |° | value = 87 ||
.................. Se-lf = DXBD4aFDB 3 3 % 3 3 %

Original Display ~ Edge Hint

Examining Shared Data Structures

122 Debugging with DDD

To access suppressed display aliases, you can also use the Display Editor. Suppressed displays
are listed in the Display Editor adiasesof the original data display. Via the Display Editor, you
can select, change, and delete suppressed displays.

Suppressed displays become visible again as soon as
e alias detection is disabled,
e their address changes such that they are no more aliases, or

e the original data display is deleted, such that the least recently changed alias becomes the new
original data display.

Please note the followingaveatswith alias detection:

e Alias detection requires that the current programming language provides a means to determine
the address of an arbitrary data object. Currently, only €+,@&nd Java are supported.

e Some inferior debuggers (for instance, Sun@s) produce incorrect output for address ex-
pressions. Given a pointgr you may verify the correct function of your inferior debugger by
comparing the values ¢f and ‘&p’ (unlessp actually points to itself). You can also examine
the data display addresses, as shown in the Display Editor.

e Alias detection slows downpD slightly, which is why you can turn it off. You may consider
to enable it only at need—for instance, while examining some complex data structure—and
disable it while examining control flow (i.e., stepping through your prograspp will auto-
matically restore edges and data displays when switching modes.

Alias detection is controlled by the following resources:

deleteAliasDisplays(class DeleteAliasDisplays) Resource
If this is ‘on’ (default), the Undisplay () ' button also deletes all aliases of the selected
displays. If this is 6ff ’, only the selected displays are deleted; the aliases remain, and one
of the aliases will be unsuppressed.

detectAliases(class DetectAliases) Resource
If ‘on’ (default), DDD attempts to recognize shared data structuresoftf ‘, shared data
structures are not recognized.

typedAliases (class TypedAliases) Resource
If *on’ (default), DDD requires structural equivalence in order to recognize shared data struc-
tures. If this is bff ’, two displays at the same address are considered aliases, regardless of
their structure.

7.3.4.4 Display Shortcuts

DDD Maintains ashortcut menwf frequently used display expressions. This menu is activated
e by pressing and holding th®Isplay ' button, or

e by pressingnouse button 8n some display and selectingew Display
e by pressingShif) andmouse button 8n some display.

, or

Chapter 7: Examining Data 123

By default, the shortcut menu contains frequently used base conversions.

The ‘Other ’ entry in the shortcut menu lets you create a new displayeksindghe shortcut
menu.

As an example, assume you have selected a display natats] ptr . Selecting Display
= Other ’"pops up a dialog that allows you to enter a new expression to be displayed—for instance,
you can cast the displagate_ptr ’to a new display (char *)date_ptr " If the ‘Include
in ‘New Display’ Menu ' toggle was activated, the shortcut menu will then contain a new entry
‘Display (char *)() " that will castanyselected displagisplay to ‘(char *) display’. Such
shortcuts can save you a lot of time when examining complex data structures.

£3 DDD: Hew Dependent Display B

Modify expression here... ... to include it in the ‘New Display’ menu.

Display Expression
\H{char *) date_ptr
FA[=1 B3

Fle Edit View 7 Include in “Display ()’ Menu Help |

- EEEE 2ld 7 2 X
D_isplayl Cancel Help | iSpk ide aie et hdisp

. Display (ehar "}()}
............. Convert to Dec

o [idateper) 0000000
(Date *) DxB04abva Convert io Hex

,,,,,,,,,,,,,, _ Convert to Oct
.............. = .. Other...

............... : Edit MBI’IU .

Display *()
Undisplay ()

Using Display Shortcuts

You can edit the contents of theew Display ' menu by selecting itsEdit Menu ’ item. This
pops up theshortcut Editorcontaining all shortcut expressions, which you can edit at leisure. Each
line contains the expression for exactly one menu item. ClickingAmply ' re-creates theNew
Display ’'menu from the text. If the text is empty, thBléw Display ' menu will be empty, too.

124 Debugging with DDD

#x DDD: Program Data M=l E3
Fle Edit View Program Data Help
0 I date_ptr ?,*v El: 23 E@ i
: Pk Hide Rofats Set Undisp
by z
14: date_ptr -3 DDD: Shortcol Editor

w ______ Shortcuts

Display *()
' ey Hchar *)0) /4 Display (char *3()
- Mews Display " Ipisplay (char*)() || 7/d O "7/ convert to Dec

O Hi fw £ FF Convert to Hew
. e Convert 1o Dec fo 3 FF Convert to Oct
_ Botatg Convert to Hex
Set Value... Cﬂﬂ_l\i"El't. m OCt.
Undisplay Other...

Invoke shortcut editor ——————FEdit Menu....

0K Bpply Cancel Help

Editing Display Shortcuts

DDD also allows you to specify individual labels for user-defined buttons. You can write such a
label after the expression, separated/y’: This feature is used in the default contents of ¢t
‘New Display ’menu, where each of the base conversions has a label:

It /[Convert to Bin
/d () I/ Convert to Dec
X () /[Convert to Hex
/o () /I Convert to Oct

Feel free to add other conversions hasep supports up to 20New Display ' menu items.
The shortcut menu is controlled by the following resources:

dbxDisplayShortcuts (class DisplayShortcuts) Resource
A newline-separated list of display expressions to be included inNbBe/ ‘Display * menu
for DBX.

If a line contains a label delimitér the string before the delimiter is used aépression,
and the string after the delimiter is used as label. Otherwise, the laligisislay expres-
sion’. Upon activation, the string() ' in expression is replaced by the name of the currently
selected display.

gdbDisplayShortcuts (class DisplayShortcuts) Resource
A newline-separated list of display expressions to be included inNbe/‘Display ' menu
for cpB. See the description oflbxDisplayShortcuts ', above.
3 The string !/ ’; can be changed via théabelDelimiter 'resource. Se8ection 10.4.1 [Customizing

Buttons], page 154or details.

Chapter 7: Examining Data 125

jdbDisplayShortcuts (class DisplayShortcuts) Resource
A newline-separated list of display expressions to be included inNbe/‘Display ' menu
for JDB. See the description oflbxDisplayShortcuts ', above.
perlDisplayShortcuts (class DisplayShortcuts) Resource
A newline-separated list of display expressions to be included inNbes‘Display ' menu
for Perl. See the description adbxDisplayShortcuts ', above.
bashDisplayShortcuts (class DisplayShortcuts) Resource
A newline-separated list of display expressions to be included inNbe/‘Display ' menu
for Bash. See the description afdxDisplayShortcuts ', above.
pydbDisplayShortcuts (class DisplayShortcuts) Resource
A newline-separated list of display expressions to be included inNbe/‘Display ' menu
for pYDB. See the description oflbxDisplayShortcuts ', above.
xdbDisplayShortcuts (class DisplayShortcuts) Resource
A newline-separated list of display expressions to be included inNbes/‘Display ' menu
for xDB. See the description oflbxDisplayShortcuts ', above.

7.3.5 Customizing Displays

7.3.5.1 Using Data Themes

DDD provides a simple method to customize displays)d comes with a number ofisual
modifiers calleddata themes

Each theme modifies a particular aspect of a data display. It can be applied to individual displays
or to a number of displays. The themes installed witip include:

‘Small Titles
Apply this theme to show display titles in a smaller font.

‘Small Values ’
Apply this theme to display values in a smaller font.

‘Tiny Values
Apply this theme to display values in a tiny font.

‘Suppress Values
Apply this theme to display values not at all.

Each of these themes can be applied for specific displays.

126

Debugging with DDD

1: twodim
0x804a918 "Pioneering"|0x804a92c "computer")
0x804a923 "women" 0x804a935 "science" Normal Data Display
0x804a929 "in" 0x804a93d "!"
1: twodim
0x804a918 "Pioneering"|0x804a92c "computer"
0x804a923 "women" 0x804a935 "science" Red and Green Backgrounds
0x804a929 "in" 0x804a93d "!"
1: twodim
0x804a918 "Pioneering"|0x804a92c "computer" Small Tit

m
0%8042923 "women" 0%8042935 "science" all Titles
0x804a929 "in" 0x804a93d "!"
1: twodim
0x804a918 "Pioneering"|0x804a92c "computer" Small Val
0x804a923 "women" 0x804a935 "science" mall values
0x804a929 "in" 0x804a93d "!"
1: twodim
0x804a918 "Pioneering" | 0x804a92¢ "computer"
0x804a923 "women" [0x804a935 "science” Tiny Values
0x804a929 "in" 0x804a93d "!"

1: twodim

0x804a92c "computer"
0x804a935 "science"
0x804a93d "!"

Suppress Values

Some DDD Themes

To apply a theme on a display,
1. Pressnouse button 8n the display.
2. SelectTheme
3. Select the theme to apply.

For instance, to display the varialdein a tiny font, clickmouse button ®n the display of,
and selectTheme = Tiny Values = Apply .

To unapply a theme, just click otuhdo’ (if you just applied it) or repeat the sequence as above.
7.3.5.2 Applying Data Themes to Several Values

Whenever you want to apply a theme ostauct membeor anarray elementyou will be asked
whether to

Chapter 7: Examining Data 127

e apply the theme on the single value only, or
e apply the theme on all similar values.
Suppose, for instance, that you don’t want to sger' * members anymore. Then you'd apply
the themeSuppress Valuean all similar values.

On the other hand, if you want to highlight one single value only, you'd apply the tlitede
Backgroundon only one single value.

If you find this confirmation annoying, you can define a command button which directly applies
the theme. Segection 10.5 [Defining Commands], page 1fot details on defining commands.

Applying and unapplying themes is associated with the following commands:
graph apply theme name pattern
applies the themeame on pattern.
graph unapply theme name pattern
unapplies the themeame on pattern.
graph toggle theme name pattern
applies the themeame on pattern if it was not already applied, and unapplies it otherwise.

7.3.5.3 Editing Themes

Each theme can be globally activated or not. If a theme is activated, it is applied to all expressions
that match itpattern

Normally, these patterns are automatically maintained by simply selecting the themes for the
individual displays. However, you can also edit patterns directly.

Patterns are separated hy and contain shell-like metacharacters:

“*’ matches any sequence of characters.
e ‘?’ matches any single character.

e ‘[set] ' matches any character iset. Character ranges can be expressed usiog-to:
‘[0-9a-zA-Z] ’isthe set of characters allowed in C characters.

e '[! set] ' matches any character not sat.

e To suppress the special syntactic significance of any metachanactend match the character
exactly, precede it with\"’ (backslash).

e To suppress the syntactic significanceatifmetacharactefsn\ enclose the pattern in double
or single quote$.n\

To edit the set of themes, invokBata = Themes'.

To apply changes you made to the themes, clickApply . To revert the themes to the last
saved, click onReset .

7.3.5.4 Writing Data Themes

You can write your own data themes, customizing the display to match your neede e
“Top” in Writing DDD Themes, for details.

128 Debugging with DDD

7.3.5.5 Display Resources

You can use these resources to control display appearance:

autoCloseDataWindow (class AutoClose) Resource
If this is ‘on’ (default) andppD is in stacked window mode, deleting the last display auto-
matically closes the data window. If this isff ’, the data window stays open even after
deleting the last display.

bumpDisplays (class BumpDisplays) Resource
If some displayd changes size and this resourceds ™ (default), DDD assigns new positions
to displays below and on the right af such that the distance between displays remains
constant. If this isoff ’, other displays are not rearranged.

clusterDisplays (class ClusterDisplays) Resource
If ‘on’, new independent data displays will automatically be clustered. Defaulfffis’,
meaning to leave new displays unclustered.

hidelnactiveDisplays (class HidelnactiveDisplays) Resource
If some display gets out of scope and this resourcens (default), DbD removes it from the
data display. If this isoff ’, itis simply disabled.

showBaseDisplayTitles(class ShowDisplayTitles) Resource
Whether to assign titles to base (independent) displays or not. Defaait’is *

showDependentDisplayTitles(class ShowDisplayTitles) Resource
Whether to assign titles to dependent displays or not. Defaudffis”.

suppressTheme(class Theme) Resource
The theme to apply when selectindridisp ' on a data value. Default istuppress.vsl '

themes (class Themes) Resource
A newline-separated list of themes. Each theme has the faramad, tabulator character,
pattern.

7.3.5.6 VSL Resources

The following resources control thesL. interpreter:

vsIBaseDefs(class VSLDefs) Resource
A string with additionalvsL definitions that are appended to the builtisL library. This
resource is prepended to thesiDefs ’ resource below and set in thebp application
defaults file; don’t change it.

Chapter 7: Examining Data 129

vslIDefs (class VSLDefs) Resource
A string with additionalvsr definitions that are appended to the builtieL library. The
default value is an empty string. This resource can be used to override spetiflefinitions
that affect the data display. The preferred method, though, is to write a specific data theme
(seeSection 7.3.5.4 [Writing Data Themes], page 127

vslLibrary (class VSLLibrary) Resource
Thevst library to use. builtin ~ ’ (default) means to use the built-in library, any other value
is used as file name.

vslPath (class VSLPath) Resource
A colon-separated list of directories to search¥er. include files. The following directory
names are special:

e The special directory nameiser_themes '’ stands for your individual theme direc-
tory, typically ‘~/.ddd/themes/ .

e The special directory nameldd_themes ’ stands for the installed theme directory,
typically ‘/usr/local/share/ddd-3.3.9/themes/ "

Default is ‘user_themes:ddd_themes:.. ', which means thabpbp first searches your
theme directory, followed by the system directory and the current directory.

If your ppD source distribution is installed iMdpt/src ’, you can use the following settings
to read thevsL library from ‘/home/joe/ddd.vsl "

Ddd*vslILibrary: /home/joe/ddd.vsl
Ddd*vslIPath: user_themes:.../opt/src/ddd/ddd:/opt/src/ddd/vsllib

vsL include files referenced byHome/joe/ddd.vsl ' are searched first in the current
directory ., then in your theme directory, then inopt/src/ddd/ddd/ ', and then in
‘lopt/src/ddd/vsllib/ ",

Instead of supplying anotherst, library, it is often easier to specify some minor changes to the
built-in library (seeSection 7.3.5.4 [Writing Data Themes], page .27

7.3.6 Layouting the Graph

If you have several displays at once, you may wish to arrange them according to your personal
preferences. This section tells you how you can do this.

7.3.6.1 Moving Displays

From time to time, you may wish to move displays at another place in the data window. You
can move a single display by pressing and holdimmuse button bn the display title. Moving the
pointer while holding the button causes all selected displays to move along with the pointer.

Edge hints can be selected and moved around like other displays. If an arc goes through the edge
hint, you can change the shape of the arc by moving the edge hint around.

For fine-grain movements, selected displays may also be moved using the arrow keys. Pressing
(Shifh and an arrow key moves displays by single pixels. Pres@mf and arrow keys moves
displays by grid positions.

130 Debugging with DDD

7.3.6.2 Scrolling Data

If the data window becomes too small to hold all displays, scroll bars are created. Ifyous
set up to us@annersinstead, a panner is created in the lower right edge. When the panner is moved
around, the window view follows the position of the panner.

To change from scroll bars to panners, ugdit = Startup = Data Scrolling "and
choose eitherPanner ’ or * Scrollbars ’
This setting is tied to the following resource:
pannedGraphEditor (class PannedGraphEditor) Resource
The control to scroll the graph.
e Ifthisis ‘on’, an Athena panner is used (a kind of two-directional scrollbar).
e Ifthisis ‘off ’ (default), two M*tif scrollbars are used.
See Section 2.1.2 [Options], page ,ldor the ‘--scrolled-graph-editor " and

‘--panned-graph-editor " options.

7.3.6.3 Aligning Displays

You can align all displays on the nearest grid position by selecbagd = Align on Grid .
This is useful for keeping edges strictly horizontal or vertical.

You can enforce alignment by selectirigdit = Preferences = Data = Auto-align
Displays on Nearest Grid Point ", If this feature is enabled, displays can be moved on grid
positions only.

7.3.6.4 Automatic Layout

You can layout the entire graph as a tree by selectdaga = Layout Graph '. The layout
direction is determined from the display placement (Seetion 7.3.1.8 [Placement], page) aad
from the last rotation (seBection 7.3.6.5 [Rotating the Graph], page JL31

Chapter 7: Examining Data 131

£2 DDD: Program Data MEE
Fle Edit View Program Data ﬁelpl

():ltree—nﬁateﬁ 2 U 5 @ =
iy sl momes SH uhasp
1t tree
(Tree *) 0xB04aee8

2: *tree
value = 7
nate = Dx8043688 “Ada”
date = {...
Teft = OxB04af10

right = OxB04afss

: *tree=>left 4: *tree->right
value =1 value =1
name = 0x80496ec "Grace" name = 0x8043700 "Mildred"
date = {... date = {...}
left = OxB04af38 : : | Teft = 0x0
right = 0x804af60 . . || right = oxn

5: *tree—>left->left

valug = 5

name = 0x80486f2 "Tudy"
date = ...}

left = 0=0

right = ox0

6: *tree—>left-—>right
value = 6 s
name = QxB0496f7 "Kathleen"
date = {...}

left = 0z0
right = 0x0

A Layouted Graph (with Compact Layout)

Layouting the graph may introduedge hints; that is, edges are no more straight lines, but lead
to an edge hint and from there to their destination. Edge hints can be moved around like arbitrary

displays.

To enable a more compact layout, you can set thdit’ = Preferences = Data =
Compact Layout ’ option. This realizes an alternate layout algorithm, where successors are
placed next to their parents. This algorithm is suitable for homogeneous data structures only.

You can enforce layout by settingedit = Preferences = Data = Automatic
Layout . If automatic layout is enabled, the graph is layouted after each change.

7.3.6.5 Rotating the Graph

You can rotate the entire graph clockwise by 90 degrees by selediata ‘= Rotate
Graph’. You may need to layout the graph after rotating it; Seection 7.3.6.4 [Automatic
Layout], page 130for detalils.

7.3.7 Printing the Graph

DpDD allows for printing the graph picture on PostScript printers or into files. This is useful for
documenting program states.

132 Debugging with DDD

= DDD: Print

Print To IT File

Print Command |§|pr Enter print command

Rig Hame Bmws_e...l

File Type 4 PostSenpt < FIG I Color

Print 4 Displays - Plots |7 Selected Only

Orientation #- Portrait + Landscape
84 (210mm = 297mm) - A3 (297mm x 420mm)

Paper Size. + Letter (8% x 11"} ~ Legal{8%" =14 Select paper size
+ Executive (71" x 10") - Other...

Click to print —————Print | Cancel | Help |

Printing displays

To print the graph on a PostScript printer, seléile = Print Graph . Enter the printing
command in thePrint Command '’ field. Click on the ‘OK or the ‘Apply ' button to start printing.

As an alternative, you may also print the graph in a file. Click on Fie* ’ button and enter
the file name in theFile Name '’ field. Click on the Print ' button to create the file.

When the graph is printed in a file, two formats are available:
e ‘PostScript '—suitable for enclosing the graph in another document;

e 'FIG’'—suitable for post-processing, using tkég graphic editor, or for conversion into
other formats (among othengMmcL, TeX, pic), using theransfig ~ orfig2dev programs.

self self self
. 14 * value = 85 '/Dext value = 86 th value = 87 '/>
S ls: i Ol seir - oxsosag3ol[M¥Ll coir - oxsosafaol["Ll solf - oxsodafso
(List *) 0x804af30 next = 0x804af40 next = 0x804af50 next = 0x804af30
next

Output of the ‘Print Graph’ Command

Please note the followingaveatgelated to printing graphs:

e If any displays were selected when invoking thi&rint ’ dialog, the option Selected
Only " is set. This make®DD print only the selected displays.

Chapter 7: Examining Data 133

e The ‘Color ', ‘Orientation ', and ‘Paper Size ' options are meaningful for PostScript
only.

These settings are tied to the following resources:

printCommand (class PrintCommand) Resource
The command to print a PostScript file. Usually * or *lpr °

paperSize (class PaperSize) Resource
The paper size used for printing, in formatidth x height’. The default is ISO A4 format,
or ‘210mm x 297mrh

7.4 Plotting Values

If you have huge amounts of numerical data to examine, a picture often says more than a thou-
sand numbers. Thereforepp allows you to draw numerical values in nice 2-D and 3-D plots.

7.4.1 Plotting Arrays

Basically,ppD can plot two types of numerical values:

e One-dimensional arrays. These are drawn in a23Dspace, where denotes the array index,
andy the element value.

e Two-dimensional arrays. These are drawn in a 3/B/z space, whera andy denote the
array indexes, and the element value.

To plot a fixed-size array, select its name by clickmguse button bn an occurrence. The
array name is copied to the argument field. By clicking ot ' button, a new display is created
in the data window, followed by a new top-level window containing the value plot.

To plot a dynamically sized array, you must use an array sliceSsegon 7.3.2.1 [Array Slices],
page 11). In the argument field, enter

array| first]@nelems

wherearray is the name of the array to displaist is the index of the first element, amélems is
the number of elements to display. Then, click 8lot ' to start the plot.

To plot a value, you can also enter a command at the debugger prompt:
graph plot expr

works like ‘graph display expr’ (and takes the same arguments; Seetion 7.3.1.1 [Creating
Single Displays], page 10,/but the value is additionally shown in the plot window.

Each time the value changes during program execution, the plot is updated to reflect the current
values. The plot window remains active until you close it (idlé = Close ’) or until the
associated display is deleted.

134 Debugging with DDD

7.4.2 Changing the Plot Appearance

The actual drawing is not done lypp itself. Instead,bDDD relies on an externajnuplot
program to create the drawing.

DDD adds a menu bar to the Gnuplot plot window that lets you influence the appearance of the
plot:

e The View ' menu toggles optional parts of the plot, such as border lines or a background grid.

e The ‘Plot " menu changes thplotting style. The ‘3-D Lines ’ option is useful for plotting
two-dimensional arrays.

e The ‘Scale ' menu allows you to enable logarithmic scaling and to enable or disable the scale
tics.

e The ‘Contour ' menu adds contour lines to 3-D plots.
In a 3-D plot, you can use the scroll bars to change your view position. The horizontal scroll bar

rotates the plot around theaxis, that is, to the left and right. The vertical scroll bar rotates the plot
around they axis, that is, up and down.

£ DDD: fusriusersists) zellerddd/ddi/cixiest.C ol
Fle Edit View Program Commands Slatus Source Data Help
()ldr: £ DDD: ir Hi[=] £
. Fle Edit View Plot Scale Contour Help
i 90+
80+ — A 1-D Array
0k
—_——————— B0 -
void plot_test() SD:'
T *:
¢ File Edit View 22
ik m o Change Style
J " =" 20 3040 s0_eQ 3D Lines I
¢ 100- Points and Lines ||

Impulses
Dots
Steps

* Boxzes:

A 2-D Array T

Rotate View ————————25sEs —J P

Plotting 1-D and 2-D Arrays

You can also resize the plot window as desired.

7.4.3 Plotting Scalars and Composites

Besides plotting arraysypp also allows you to plot scalars (simple numerical values). This
works just like plotting arrays—you select the numerical variable, clickRdot' ', and here comes

Chapter 7: Examining Data 135

the plot. However, plotting a scalar is not very exciting. A plot that contains nothing but a scalar
simply draws the scalar’s value ay @onstant—that is, a horizontal line.

So why care about scalars at ali®D allows you to combinenultiple values into one plofhe
basic idea is: if you want to plot something that is neither an array nor a soalatakes all numer-
ical sub-values it can find and plots them all together in one window. For instance, you can plot all
local variables by selectindgpata = Display Local Variables ’, followed by ‘Plot . This
will create a plot containing all numerical values as found in the current local variables. Likewise,
you can plot all numeric members contained in a structure by selecting it, followeeldity '.

If you want more control about what to include in a plot and what not, you cadispiay clus-
ters(seeSection 7.3.1.9 [Clustering], page)14A common scenario is to plot a one-dimensional
array together with the current index position. This is done in three steps:

1. Display the array and the index, usiigjsplay '’
2. Cluster both displays: select them and chots®lisp = Cluster () .
3. Plot the cluster by pressinglot ’

Scalars that are displayed together with arrays can be displayed either as vertical lines or hori-
zontal lines. By default, scalars are plotted as horizontal lines. However, if a scalar is a valid index
for an array that was previously plotted, it is shown as a vertical line. You can change this initial
orientation by selecting the scalar display, followed Bptate '

7.4.4 Plotting Display Histories

At each program stoppDD records the values of all displayed variables, such that you can
“undo” program execution (se€&=ction 6.8 [Undoing Program Execution], page)Ldhesedisplay
historiescan be plotted, too. The menu iteRIo6t = Plot history of () ' creates a plot that
shows all previously recorded values of the selected display.

7.4.5 Printing Plots

If you want to print the plot, selecFile = PrintPlot . This pops up theopD printing
dialog, set up for printing plots. Just as when printing graphs, you have the choice between printing
to a printer or a file and setting up appropriate options.

The actual printing is also performed by Gnuplot, using the appropriate driver. Please note the
following caveatselated to printing:

e Creating FIG’ files requires an appropriate driver built into Gnuplot. Your Gnuplot program
may not contain such a driver. In this case, you will have to recompile Gnuplot, including the
line ‘#define FIG ’in the Gnuplot term.h ' file.

e The ‘Portrait ' option generates anps file useful for inclusion in other documents. The
‘Landscape ' option makesppbp print the plot in the size specified in thBaper Size
option; this is useful for printing on a printer. IiPortrait ' mode, the Paper Size
option is ignored.

e The Gnuplot device drivers for PostScript and X11 each have their own set of colors, such that
the printed colors may differ from the displayed colors.

e The ‘Selected Only ' option is set by default, such that only the currently selected plot is
printed. (If you select multiple plots to be printed, the respective outputs will all be concate-
nated, which may not be what you desire.)

136 Debugging with DDD

7.4.6 Entering Plotting Commands

Via ‘File = Command you can enter Gnuplot commands directly. Each command entered
at the gnuplot> ' prompt is passed to Gnuplot, followed by a Gnuplaplot ' command to
update the view. This is useful for advanced Gnuplot tasks.

Here’s a simple example. The Gnuplot command
set xrange [xmin: xmax]

sets the horizontal range that will be displayediain. . .xmax. To plot only the elements 10 to
20, enter:
gnuplot> set xrange [10:20]
gnuplot> _
After each command enteredpp adds areplot command, such that the plot is updated
automatically.

Here’s a more complex example. The following sequence of Gnuplot commands saves the plot
in TeX format:

gnuplot> set output "plottex " # Set the output filename
gnuplot> set term latex # Set the output format
gnuplot> set term x11 # Show original picture again
gnuplot>

Due to the implicitreplot command, the output is automatically written pbot.tex ' after
theset term latex command.

The dialog keeps track of the commands entered; use the arrow keys to restore previous com-
mands. Gnuplot error messages (if any) are also shown in the history area.

The interaction betweempDD and Gnuplot is logged in the file~/.ddd/log ' (see
Section B.5.1 [Logging], page 1)Y.0TheppD ‘--trace ' option logs this interaction on standard
output.

7.4.7 Exporting Plot Data

If you want some external program to process the plot data (a stand-alone Gnuplot program or
thexmgr program, for instance), you can save the plot data in a file, usiilg * = Save Data
As’. This pops up a dialog that lets you choose a data file to save the plotted data in.

The generated file starts with a few comment lines. The actual data follows in X/Y or X/Y/Z
format. It is the same file as processed by Gnuplot.

7.4.8 Animating Plots

If you want to see how your data evolves in time, you can set a breakpoint whose command
sequence ends in@nt command (se&ection 5.1.8 [Breakpoint Commands], page &ach
time this “continue” breakpoint is reached, the program stopsamdupdates the displayed values,
including the plots. ThemDD executes the breakpoint command sequence, resuming execution.

This way, you can set a “continue” breakpoint at some decisive point within an array-processing
algorithm and havepbp display the progress graphically. When your program has stopped for good,
you can useUndo’ and ‘Redo’ to redisplay and examine previous program states.SSe¢on 6.8
[Undoing Program Execution], page 136r details.

Chapter 7: Examining Data 137

7.4.9 Customizing Plots

You can customize the Gnuplot program to invoke, as well as a number of basic settings.

7.4.9.1 Gnuplot Invocation

Using ‘Edit = Preferences = Helpers = Plot ’, you can choose the Gnuplot pro-
gram to invoke. This is tied to the following resource:

plotCommand (class PlotCommand) Resource
The name of a Gnuplot executable. Defaultgauplot ’, followed by some options to set
up colors and the initial geometry.

Using ‘Edit = Preferences = Helpers = PlotWindow ’, you can choose whether
to use the Gnuplot plot window External ') or to use the plot window supplied byDD
(‘builtin). This is tied to the following resource:

plotTermType (class PlotTermType) Resource
The Gnuplot terminal type. Can have one of two values:

e Ifthisis ‘x11’, ppD “swallows” theexternalGnuplot output window into its own user
interface. Some window managers, notatsiwmhave trouble with swallowing tech-
nigues.

e Setting this resource txlib '’ (default) makesbpp provide abuiltin plot windowin-
stead. In this mode, plots work well with any window manager, but are less customizable
(Gnuplot resources are not understood).

You can further control interaction with the external plot window:

plotWindowClass (class PlotWindowClass) Resource
The class of the Gnuplot output window. When invoking Gnupbatp waits for a window

with this class and incorporates it into its own user interface (unjgesTermType 'is
‘xlib ’; see above). Default isGnuplot .
plotWindowDelay (class WindowDelay) Resource

The time (in ms) to wait for the creation of the Gnuplot window. Before this delay,

looks at each newly created window to see whether this is the plot window to swallow. This
is cheap, but unfortunately, some window managers do not pass the creation event to

If this delay has passed, amdbD has not found the plot windowyDD searchesll existing
windows, which is pretty expensive. Default time2i800 .

7.4.9.2 Gnuplot Settings

To change Gnuplot settings, use these resources:

plotinitCommands (class PlotinitCommands) Resource
The initial Gnuplot commands issued bpp. Default is:

138 Debugging with DDD

set parametric

set urange [0:1]

set vrange [0:1]

set trange [0:1]
The ‘parametric ’ setting is required to make Gnuplot understand the data files as gener-
atedppp. The range commands are used to plot scalars.

See the Gnuplot documentation for additional commands.

plot2dSettings (class PlotSettings) Resource
Additional initial settings for 2-D plots. Default isét noborder . Feel free to customize
these settings as desired.

plot3dSettings (class PlotSettings) Resource
Additional initial settings for 3-D plots. Default isét border . Feel free to customize
these settings as desired.

7.5 Examining Memory

Using GDB Or DBX, you can examine memory in any of several formats, independently of your
program’s data types. The iterData = Memory’ pops up a panel where you can choose the
format to be shown.

£ DDD: Jusriusersistsiizeller/ddd/ddn/cxxtesl.C

Ale Edit View Program Commands Status Source Data Help

- —_ e ——————
O | nand Y B8 @ 2 e Ao
§ Lookup Findss Bremk Latch Print Display Hide foiaie Set Undieo

2: nane
"hugo", “W000° <repeats 232 times:, "k, \000@02%000@41 %01 7@4003%0004000400007 %004 b

X Memory Dump
t |owbFFFTSed < ypbindlist+21461903685: 104 °h° 117 "u’ 103 "9’ 111 ‘0" 0 *3000° .
OxbFfFf56c < ypbindlist+2146190376>F 0 “\000° *ionn: as Status Display

£ Simple I/0 = |
char name[10241;
cout << "What’s your name? '; Run
cin »» name;
ﬁ cout << "Hello, " << name << "1yn"; Interrupt
Step | Stepi.
£2 DDD: Examine Memory
Bcammelz 10 | = char | | bytes _.|fm-m|iname X Enter address here
Click here to print... _print_| _Display | _Qose | _teip_|

|
A

=

-

{gdby x /10ch name
O0xbffff564 <__ypbindlist+21461903685: 104 “h* 117 "u® 103 "g" 111 ‘o 0 “\ooo®
“%000° 0 “wooo* 0 *\ooo®

: Y 4000
... in the GDB console %xgggf{ss: <_yphindlist+21461903765: 0 “\000° 0 *1000°
E =)

/
A Oxbfff564 < yphindlist+2146190368= 104 *h* 117 W 103 "y 111 %0’ 0 20007 0 20007 0 H000° 0 ﬁUEI'F

Examining Memory

Chapter 7: Examining Data 139

In the panel, you can enter
e arepeat count, a decimal integer that specifies how much memory (counting by units) to display
e adisplay format—one of

‘octal * Print as integer in octal
‘hex’ Regard the bits of the value as an integer, and print the integer in hexadecimal.
‘decimal ’

Print as integer in signed decimal.

‘unsigned
Print as integer in unsigned decimal.

‘binary ° Print as integer in binary.

‘float * Regard the bits of the value as a floating point number and print using typical
floating point syntax.

‘address ’
Print as an address, both absolute in hexadecimal and as an offset from the nearest
preceding symbol.
‘instruction '
Print as machine instructions. The unit size is ignored for this display format.
‘char’ Regard as an integer and print it as a character constant.
‘string ' Print as null-terminated string. The unit size is ignored for this display format.

e Aaunit size—one of
‘bytes * Bytes.

‘halfwords
Halfwords (two bytes).

‘words © Words (four bytes).

‘giants ' Giant words (eight bytes).
e anaddress—the starting display address. The expression need not have a pointer value (though
it may); it is always interpreted as an integer address of a byte of memory.

There are two ways to examine the values:

e You can dump the memory in the debugger console (ustngt). If you repeat the resulting
‘x’ command by pressingRefurn in the debugger console (sé&ection 10.1.2 [Command
History], page 14} the following area of memaory is shown.

e You can also display the memory dump in the data window (udbigplay °). If you choose
to display the values, the values will be updated automatically each time the program stop.

140 Debugging with DDD

Chapter 8: Machine-Level Debugging 141

8 Machine-Level Debugging

Sometimes, it is desirable to examine a program not only at the source level, but also at the
machine levelbDD provides special machine code and register windows for this task.

8.1 Examining Machine Code

To enable machine-level support, selesbtirce = Display Machine Code '. With ma-
chine code enabled, an additiomachine code windoshows up, displaying the machine code of
the current function. By moving the sash at the right of the separating line between source and
machine code, you can resize the source and machine code windows.

£ DDD: fusrfusersists1izellerfddd/dddicxxtest.C | _ O] =]
Fle Edit View Program Commands Status Source Data Help
= = = — e =
0 | 08048886 L L W P e G & & W
* Lookup Finds - Break Wetch Print Display Show Rotaie Set Undisp
void tree_test(d o
i
ITree *tree =.0; Run i
P Ttree = new Tree(?, "Ada"); /4 Byron Lovelace >
tree—:left = new Tree(1, "Grace"); £4 Murray Hopper Interrupt
tree—:left=rleft = new Tree(5, "Judy"); £ Clapp it il ; ;
tree—:left—rright = new Tree(f, "Kathleen"); // McNulty M% Step one instruction

Mewt | mexti| | 1/
riy
-

0x8048876 <tree_testivoid)+6:: movl $0x0,0xFFEFEFFc{%ebp) | Until | Finish
&Y 0x804887d <tree_test(vaid)+13>: pushl $0x20496e8 JlJl

el “t:ree—’t:eS’t:EVm:g%”Eg” IJUSH %8”54 iyl Assembler instructions
i <tree_test{voidi+203: pus b

) GFEEEEES <tree_testivoidi+22:: call 0x3049330 < builtin_ U | own|
0x804888h <tree_testi{void)+27>: add] $0x4 ,%esp Back | Fud
0x804888e <tree_test(void)+30>: movl %eax,¥eax -
0x8048890 <tree_test{voidi+3zs: pushl %eax Edit | Make
0x8048891 <tree_test{voidi+3ds: call 0xe048fc0 <Tree::Tree(rr——crmar— y

A G i3

Showing Machine Code

The machine code window works very much like the source window. You can set, clear, and
change breakpoints by selecting the address and pressBrgak’ ' or ‘ Clear ’ button; the usual
popup menus are also available. Breakpoints and the current execution position are displayed si-
multaneously in both source and machine code.

The ‘Lookup ’ button can be used to look up the machine code for a specific function—or the
function for a specific address. Just click on the location in one window and ju@sisup ' to see
the corresponding code in the other window.

If source code is not available, only the machine code window is updated.

You can customize various aspects of the disassembling windows&een 8.4 [Customizing
Machine Code], page 14for details.

! The machine code window is available withs and somebsx variants only.

142 Debugging with DDD

8.2 Machine Code Execution

All execution facilities available in the source code window are available in the machine code
window as well. Two special facilities are convenient for machine-level debugging:

To execute just one machine instruction, click on tB&pi ’ button or selectProgram =
Step Instruction '

To continue to the next instruction in the current function, click on thexti ' button select
‘Program = Next Instruction ".. This is similar to Stepi ’, but any subroutine calls are
executed without stopping.

Using GDB, it is often useful to do
graph display /i $pc

when stepping by machine instructions. This mabke® automatically display the next instruction
to be executed, each time your program stops.

8.3 Examining Registers

DDD provides aregister windowshowing the machine register values after each program stop.
To enable the register window, seleStatus = Registers .2

£x DDD: fusriusers/stsifzellerfddd/ddd/cxxtest.C [_ O]
File Edit View Program Commands Status Source Data Help
i 0: Te R D B 1 e A o ® o
The regISter name z $ESFI " Lookup F§> E@k Wstch Par Dﬁ‘y s(jlw Hotate % un;:?‘;n
is COpied to () Dump of assemb’ s o —~ -
00040934 EEILIENEE £ ODD EY
0x8048939 : Run
0x804593h | Registers i :
U><8EI4893? S 02 > T - Interrupt
O0x804893 ebpl,%eax - .
ixaneasdz | |%CK g:?d ;19 [Step | step |
0%2048945 Mt | Mesti || |-
. 0x8048945 | |ebx 00 0 ate::set(D [T
Select register ——int—int—in 230 0xhf 958 Oxbffffysd Until | Finish
0x304834b | lebp OxbffFF9e4 OnbfFffaed e I
Cont| Kl
08048342 || oo 0x4000623¢ 1073766372 ﬂJ
D g:ggjgggg adi 0%B0487¢0 134514624 Up | Down
lean4pazz | (Eip 0%8048955 0%8048955 o
oxa04gasy | |eflags 0236 62 sbp) weax (S e
0xa04895¢ | {<s 023 s i o
0%304895F | |ss 0x2b 43 i T
| Ox3048360 ate::set(Daydfieek,
mt,u;ggiséggj “ Integer registers - All registers.
x&048968 fec(Bebp)
0x804896¢ ree_test{voidi+272:>
08048968
0x8048970 Cose | Help ebp) . fean
08048973
£
A fean = 0x2 [2) L

Displaying Register Values

By selecting one of the registers, its name is copied to the argument field. You can use it as value
for ‘Display ’, for instance, to have its value displayed in the data window.

2 The machine code window is available withs and somebsx variants only.

Chapter 8: Machine-Level Debugging 143

8.4 Customizing Machine Code

Enabling machine code vié&Sburce = Display Machine Code ' (see Section 8.1 [Ma-
chine Code], page 131oggles the following resource:

disassemble(class Disassemble) Resource
If this is ‘on’, the source code is automatically disassembled. The defautfffis’: See
Section 2.1.2 [Options], page lfor the --disassemble ' and ‘--no-disassemble ’
options.

You can keep disassembled code in memory, udhdit' = Preferences = Source =
Cache Machine Code :

cacheMachineCode(class CacheMachineCode) Resource
Whether to cache disassembled machine coale’ (‘default) or not (off ’). Caching ma-
chine code requires more memory, but makes run faster.

You can control the indentation of machine code, uskdit = Preferences = Source
= Machine Code Indentation "

indentCode (class Indent) Resource
The number of columns to indent the machine code, such that there is enough place to display
breakpoint locations. Default.

The ‘maxDisassemble ' resource controls how much is to be disassembled. If
‘maxDisassemble ' is set to 256 (default) and the current function is larger than 256
bytes, bDD only disassembles the first 256 bytes below the current location. You can set the
‘maxDisassemble ’resource to a larger value if you prefer to have a larger machine code view.

maxDisassemble(class MaxDisassemble) Resource
Maximum number of bytes to disassemble (defaR86). If this is zero, the entire current
function is disassembled.

144 Debugging with DDD

Chapter 9: Changing the Program 145

9 Changing the Program

DpDD offers some basic facilities to edit and recompile the source code, as well as patching
executables and core files.

9.1 Editing Source Code

In DDD itself, you cannot change the source file currently displayed. Insteadallows you to
invoke atext editor To invoke a text editor for the current source file, select &#dit' ' button or
‘Source = Edit Source .

By default,pDD tries a number of common editors. You can custormin® to use your favorite
editor; Seesection 9.1.1 [Customizing Editing], page 14ér details.

After the editor has exited, the source code shown is automatically updated.

If you havepDD and an editor running in parallel, you can also update the source code manually
via ‘Source = Reload Source °’. This reloads the source code shown from the source file.
SinceppD automatically reloads the source code if the debugged program has been recompiled,
this should seldom be necessary.

9.1.1 Customizing Editing

You can customize the editor to be used \Ealit = Preferences = Helpers = Edit
Sources . This is tied to the following resource:

editCommand (class EditCommand) Resource
A command string to invoke an editor on the specific filé@LINE®is replaced by the
current line number,@FILE@by the file name. The default is to invol&XEDITORfirst,
then$EDITOR, thenvi :
Ddd*editCommand: \

${XEDITOR-false} +@LINE@ @FILE@ || \
xterm -e ${EDITOR-vi} +@LINE@ @FILE@

This ‘~/.ddd/init ' setting invokes an editing session for an XEmacs editor running
gnuserv :
Ddd*editCommand: gnuclient +@LINE@ @FILE@
This ‘~/.ddd/init ' setting invokes an editing session for an Emacs editor running
emacsserver

Ddd*editCommand: emacsclient +@LINE@ @FILE@
9.1.2 In-Place Editing

This resource is experimental:

sourceEditing (class SourceEditing) Resource
If this is ‘on’, the displayed source code becomes editable. This is an experimental feature;
Default is off ’

146 Debugging with DDD

9.2 Recompiling

To recompile the source code usinmpke, you can selectFile = Make’. This pops up a
dialog where you can enterMake Target—typically the name of the executable. Clicking on the
‘Make’ button invokes thanake program with the given target.

The ‘Make’ button on the command tool re-invokesake with the most recently given argu-
ments.

9.3 Patching

Using GDB, you can open your program’s executable code (and the core file) for both reading
and writing. This allows alterations to machine code, such that you can intentionally patch your
program'’s binary. For example, you might want to turn on internal debugging flags, or even to make
emergency repairs.

Note that depending on your operating system, special preparation steps, such as setting permis-
sions, may be needed before you can change executable files.

To patch the binary, enableEdit = GDB Settings = Writing into executable
and core files ’. This makesaDB open executable and core files for both reading and writing.
If you have already loaded a file, you must load it again (uskdjt’ = Open File ' or ‘' Edit
= Open Core’), for your new setting to take effect.

Be sure to turn offWriting into executable and core files ’as soon as possible, to
prevent accidental alterations to machine code.

Chapter 10: The Command-Line Interface 147

10 The Command-Line Interface

All the buttons you click withinbpp get eventually translated into some debugger command,
shown in the debugger console. You can also type in and edit these commands directly.

10.1 Entering Commands

In the debugger consoleyou can interact with the command interface of the inferior debug-
ger. Enter commands at tleebugger promptthat is, (gdb) ' for ¢ps, ‘(dbx) ' for DBX,
‘(ladebug) ' for Ladebug, >’ for xpB, ‘>" and ‘thread[depth] ' for JpB, or ‘(Pydb) ' for
PYDB, or ‘DB<> for Perl, or ‘bashdb<> ' for Bash. You can use arbitrary debugger commands;
use theReturn key to enter them.

10.1.1 Command Completion

When usingcDB or Perl, you can use thgAB) key for completingcommands and arguments.
This works in the debugger console as well as in all other text windows.

DB can fill in the rest of a word in a command for you, if there is only one possibility; it can
also show you what the valid possibilities are for the next word in a command, at any time. This
works forGbB commands@DB subcommands, and the names of symbols in your program.

Press theTAB) key whenever you warntDB to fill out the rest of a word. If there is only one
possibility, cpB fills in the word, and waits for you to finish the command (or pr&ST) to enter
it). For example, if you type

(gdb) info bre_ TAB)
¢ps fills in the rest of the wordbreakpoints ’, since that is the onlyjnfo subcommand begin-
ning with ‘bre "

(gdb) info breakpoints

You can either pres®ET) at this point, to run thénfo breakpoints command, or backspace
and enter something else, lfreakpoints ’does not look like the command you expected. (If you
were sure you wanteitifo breakpoints in the first place, you might as well just ty@eET)

immediately afterinfo bre °’, to exploit command abbreviations rather than command comple-
tion).

If there is more than one possibility for the next word when you p{BS3), DbD sounds a bell.
You can either supply more characters and try again, or just gi@Bsa second timegDB displays
all the possible completions for that word. For example, you might want to set a breakpoint on a
subroutine whose name begins withake_’, but when you typé make_(TAB), bDD just sounds
the bell. Typing@TAB) again displays all the function names in your program that begin with those
characters. If you typgAB) again, you cycle through the list of completions, for example:

(gdb) b make_ (TAB)
DDD sounds bell; pres§AB) again, to see:

make_a_section_from_file make_environ

make_abs_section make_function_type
make_blockvector make_pointer_type
make_cleanup make_reference_type
make_command make_symbol_completion_list

(gdb) b make_ TAB)

148 Debugging with DDD

DDD presents one expansion after the other:

(gdb) b make_a_section_from_file (TAB)

(gdb) b make_abs_section (TAB)

(gdb) b make_blockvector (TAB)
After displaying the available possibilities;pB copies your partial input f make_’ in the ex-
ample) so you can finish the command—Dby pressiiAB) again, or by entering the remainder
manually.

Sometimes the string you need, while logically a “word”, may contain parentheses or other
characters that:bB normally excludes from its notion of a word. To permit word completion to
work in this situation, you may enclose words irfsingle quote marks) inbB commands.

The most likely situation where you might need this is in typing the name of-afGnction.

This is because €+ allows function overloading (multiple definitions of the same function, dis-
tinguished by argument type). For example, when you want to set a breakpoint you may need to
distinguish whether you mean the versiomaime that takes aiint parametername(int) , or
the version that takes float parametername(float) . To use the word-completion facili-
ties in this situation, type a single qudteat the beginning of the function name. This alertss
that it may need to consider more information than usual when you pr&Bs to request word
completion:

(gdb) b ’bubble(_TAB)

bubble(double,double) bubble(int,int)

(gdb) b ’bubble(

In some cases)DD can tell that completing a name requires using quotes. When this happens,
DDD inserts the quote for you (while completing as much as it can) if you do not type the quote in
the first place:

(gdb) b bub_({TAB)
DDD alters your input line to the following, and rings a bell:

(gdb) b ’bubble(
In generalppD can tell that a quote is needed (and inserts it) if you have not yet started typing the
argument list when you ask for completion on an overloaded symbol.

If you prefer to use thélAB) key for switching between items, unséidit = Preferences
= General = TAB Key completes in All Windows ". This is useful if you have pointer-
driven keyboard focus (see below) and no special usage foA® key. If the option is set, the
(TAB) key completes in the debugger console only.

This option is tied to the following resource:

globalTabCompletion (class GlobalTabCompletion) Resource
If this is ‘on’ (default), the(TAB) key completes arguments in all windows. If this aéf* ’,
the (TAB) key completes arguments in the debugger console only.

10.1.2 Command History

You canrepeatprevious and next commands by pressing g and (Down arrow keys, re-
spectively. This presents you previous and later commands on the command lirfeetusg to
apply the current command.

If you enter an empty line (just uggeturn at the debugger prompt), the last command is repeated
as well.

Chapter 10: The Command-Line Interface 149

‘Commands= Command History ' shows the command history.

£ DDD: Command History

Command History
graph enable display 2 5

Position in History info program

info source

info line fusrfusersistst/zeller/ddd/ddd/cxxtest.Co150
graph disable display 1

graph enable display 1

info line "list_test”

graph disahle display 1 ¥

£3 DDD: Debuyger

Fle Edit View

(gdb) Quit

i(gdh) info proar Sk | _Pqpply | Hisse | Help |
(gdbh) graph dis:z
(gdb) graph enak
(gdb) graph disable display 1

{gqdb) graph enable display 1
(reverse—i—search)“info p": finfo program

i

Search String Command Apply Selected Command

Searching with Ctrl+B in the Command History

You cansearchfor previous commands by pressif@r+B). This invokesincremental search
mode,where you can enter a string to be searched in previous commands.(@rE8& again to
repeat the search, to search in the reverse direction. To return to normal mode, press
(ESC, or use any cursor command.

The command history is automatically saved when exiting. You can turn off this feature by
setting the following resource toff ’:

saveHistoryOnExit (class SaveOnExit) Resource
If “on’ (default), the command history is automatically saved whem exits.

10.1.3 Typing in the Source Window

As a special convenience, anything you type into the source window is automatically forwarded
to the debugger console. Thus, you don’t have to change the keyboard focus explicitly in order to
enter commands.

You can change this behaviour using the following resource:

consoleHasFocugclass ConsoleHasFocus) Resource
If *on’ (default), all keyboard events in the source window are automatically forwarded to
the debugger console. 16ff ’, keyboard events are not forwarded. #uto ’, keyboard
events forwarded only if the debugger console is open.

150 Debugging with DDD

10.2 Entering Commands at the TTY

Rather than entering commands at the debugger console, you may prefer to enter commands at
the terminal window»opD was invoked from.

WhenbDDD is invoked using the-*tty ' option, it enables itaTy interface taking additional
debugger commands from standard input and forwarding debugger output to standard output, just
as if the inferior debugger had been invoked directly. All remainimgp functionality stays un-
changed.

By default, the debugger console remains closeaubib is invoked using the-‘tty ' option.
Use View = Debugger Console ’to open it.

DDD can be configured to use theadline ' library for reading in commands from standard
input. ThisaNu library provides consistent behavior for programs which provide a command line
interface to the user. Advantages areu Emacs-style ovi-style inline editing of commandssh -
like history substitution, and a storage and recall of command history across debugging sessions.
Seesection “Command Line Editing” iebugging with DB, for details on command-line editing
via theTTy interface.

10.3 Integrating DDD

You can runbbD as an inferior debugger in other debugger front-ends, combining their special
abilities with those obDD.

To havepDD run as an inferior debugger in other front-ends, the general idea is to set up your
debugger front-end such thaddd --tty ' is invoked instead of the inferior debugger. When
DDD is invoked using the-*tty ' option, it enables itaTy interface taking additional debugger
commands from standard input and forwarding debugger output to standard output, just as if the
inferior debugger had been invoked directly. All remainingp functionality stays unchanged.

In case your debugger front-end usesdimss ‘-fullname ’ option to haveGDB report source
code positions, the-tty ' option is not requireddDD recognizes thefullname ’option, finds
that it has been invoked from a debugger front-end and automatically enabtesthieterface.

If DDD is invoked with the ‘fullname ' option, the debugger console and the source window
are initially disabled, as their facilities are supposed to be provided by the integrating front-end. In
case of need, you can use theéw ' menu to re-enable these windows.

10.3.1 Using DDD with Emacs

To integratebDD with Emacs, us&-x gdb or M-x dbx in Emacs to start a debugging session.
At the prompt, enteddd --tty (followed by --dbx ’or ‘--gdb ', if required), and the name of
the program to be debugged. Proceed as usual.

10.3.2 Using DDD with XEmacs

To integrateppD with XEmacs, set the variabtgdb-command-name to ‘"ddd" ’, by insert-
ing the following line in your ~/.emacs '’ file:

(setg gdb-command-name "ddd")

You can also evaluate this expression by pres@®p () and entering it directly ESC ESC
for XEmacs 19.13 and earlier).

Chapter 10: The Command-Line Interface 151

To start abpp debugging session in XEmacs, udé-x gdb ' or ‘M-x gdbsrc '. Proceed as

usual.

10.3.3 Using DDD withXXGDB

To integrateppD with XXGDB, invokexxgdb as

xxgdb -db_name ddd -db_prompt ’'(gdb) ’

10.4 Defining Buttons

To facilitate interaction, you can add own command buttonstp. These buttons can be added
below the debugger consoleCnsole Buttons '), the source window Source Buttons),
or the data window Data Buttons).

To define individual buttons, use thButton Editor invoked via Commands=- Edit
Buttons ’. The button editor displays a text, where each line contains the command for exactly
one button. Clicking onOK creates the appropriate buttons from the text. If the text is empty (the
default), no button is created.

As a simple example, assume you want to creatpriti ' button. Invoke Commands
= Edit Buttons ' and enter a line sayingprinti ' in the button editor. Then click onOK.
A button namedPrinti ’* will now appear below the debugger console—try it! To remove the
button, reopen the button editor, clear tpeinti ' line and pressOK again.

If a button command contain§* ’, the string () ’ will automatically be replaced by the contents
of the argument field. For instance, a button nameturn () ' will execute thecpB ‘return
command with the current content of the argument field as argument.

By default,ppD disables buttons whose commands are not supported by the inferior debugger.
To enable such buttons, unset tiignable supported buttons only " toggle in the button
editor.

152 Debugging with DDD

£ DDD: Button Editor
ICﬂnsuIE Buttons Source Buttuns-l Data Butions |
P i
Enter text here... ?ELgFertﬂc
... to create these buttons.
3 DDD: Debuyser Console Ol x
File Edit View Program Help
Print i| Interript|
. : Y T
Starting program: Samdfinf _ bt
I7 Enable supported buttons only
Ereakpoint 1, main {3 at /f
rqdb) print i
33 = 43 _I
{qdb) T 0K | ‘Cancel | Help | ri

Defining individual buttons

DDD also allows you to specify control sequences and special labels for user-defined buttons.
SeeSection 10.4.1 [Customizing Buttons], page 1 details.

10.4.1 Customizing Buttons

ppD allows defining additional command buttons; S&ection 10.4 [Defining Buttons],
page 151for doing this interactively. This section describes the resources that control user-defined
buttons.

consoleButtons(class Buttons) Resource
A newline-separated list of buttons to be added under the debugger console. Each button
issues the command given by its name.

The following characters have special meanings:

e Commands ending with insert their name, followed by a space, in the debugger
console.

e Commands ending with a control character (thatisfollowed by a letter or ?’) insert
the given control character.

e The string () ’is replaced by the current contents of the argument figld."

e The string specified in thddbelDelimiter " resource (usually// ") separates the
command name from the button label. If no button label is specified, the capitalized
command will be used as button label.

The following button names are reserved:
‘Apply © Send the given command to the debugger.

Chapter 10: The Command-Line Interface 153

‘Back’ Lookup previously selected source position.
‘Clear ' Clear current command
‘Complete ’
Complete current command.
‘Edit ’ Edit current source file.
‘Forward "’
Lookup next selected source position.
‘Make’ Invoke the ‘make’ program, using the most recently given arguments.
‘Next’ Show next command
‘No’ Answer current debugger prompt withd'. This button is visible only if the

debugger asks a yes/no question.
‘Prev’ Show previous command
‘Reload ' Reload source file.

‘Yes’ Answer current debugger prompt witlies . This button is visible only if the
debugger asks a yes/no question.

The default resource value is empty—no console buttons are created.
Here are some examples to insert into yottddd/init 'file. These are the settings of
DDD 1.X:
Ddd*consoleButtons: Yes\nNo\nbreak”C

This setting creates some more buttons:

Ddd*consoleButtons: \

Yes\nNo\nrun\nClear\nPrevinNext\nApply\nbreak"C
See also thedataButtons ', ‘ sourceButtons ' and ‘toolButtons ' resources.

dataButtons (class Buttons) Resource
A newline-separated list of buttons to be added under the data display. Each button issues the
command given by its name. See tltensoleButtons '’ resource, above, for details on
button syntax.

The default resource value is empty—no source buttons are created.

sourceButtons (class Buttons) Resource
A newline-separated list of buttons to be added under the debugger console. Each button
issues the command given by its name. SeedtbasoleButtons ' resource, above, for
details on button syntax.

The default resource value is empty—no source buttons are created.

Here are some example to insert into youf.ddd/init "file. These are the settings of
DDD 1.X:
Ddd*sourceButtons: \
run\nstep\nnext\nstepi\nnexti\ncont\n\
finish\nkilN\nup\ndown\n\
Back\nForward\nEdit\ninterrupt*C

This setting creates some buttons which are not found on the command tool:

154 Debugging with DDD

Ddd*sourceButtons: \
print *()\ngraph display *(\nprint /x ()\n\
whatis ()\nptype ()\nwatch ()\nunti\nshell
An even more professional setting uses customized button labels.

Ddd*sourceButtons: \

print *(()) // Print *()\n\

graph display *(()) // Display *()\n\
print /x ()\n\

whatis () // What is ()\n\

ptype ()\n\

watch ()\n\

until\n\

shell

See also the consoleButtons
‘toolButtons ' resource, below.

and ‘dataButtons ' resources, above, and the

toolButtons (class Buttons) Resource
A newline-separated list of buttons to be included in the command tool or the command tool
bar (seeSection 3.3.1.1 [Disabling the Command Tool], pagg. SZach button issues the
command given by its name. S&ection 10.4 [Defining Buttons], page 15or details on
button syntax.

The default resource value is

Ddd*toolButtons: \
run\nbreak~C\nstep\nstepi\nnext\nnexti\n\
until\nfinish\ncont\n\kill\n\
up\ndown\nBack\nForward\nEdit\nMake

For each button, its location in the command tool must be specified usmgorni con-
straint resources. See tHedd’ application defaults file for instructions.

If the ‘toolButtons ' resource value is empty, the command tool is not created.

The following resources set up button details:

labelDelimiter (class LabelDelimiter) Resource
The string used to separate labels from commands and shortcuts. DefAult is *

verifyButtons (class VerifyButtons) Resource
If ‘on’ (default), verify for each button whether its command is actually supported by the
inferior debugger. If the command is unknown, the button is disabled. If this resource is
‘off ’, no checking is done: all commands are accepted “as is”.

10.5 Defining Commands

Aside from breakpoint commands (sBection 5.1.8 [Breakpoint Commands], page, &b
also allows you to define user-defined commandsisér-defined commarigl a sequence of com-
mands to which you assign a new name as a command. This new command can be entered at the
debugger prompt or invoked via a button.

Chapter 10: The Command-Line Interface 155

10.5.1 Defining Simple Commands using GDB

Aside from breakpoint commands (sd&réakpoint commands ’, above),DDD also allows
you to store sequences of commands as a user-defioB¢dommand. Auser-defined commarid
a sequence afpB commands to which you assign a new name as a command. Dsingthis is
done via theCommand Editarinvoked via Commands=- Define Command .

A ¢pB command is created in five steps:

1. Enter the name of the command in ti@mmandfield. Use the drop-down list on the right
to select from already defined commands.

2. Click on ‘Record ’ to begin the recording of the command sequence.

3. Now interact wittbpp. While recordingppb does not execute commands, but simply records
them to be executed when the breakpoint is hit. The recorded debugger commands are shown
in the debugger console.

4. To stop the recording, click ofehd’ or enter ‘end’ at the cbB prompt. Tocancelthe record-
ing, click on ‘Interrupt " or press{ESC.

5. Click on ‘Edit >> ' to edit the recorded commands. When done with editing, clickkait*
<<’ to close the commands editor.

After the command is defined, you can enter it at thes prompt. You may also click on
‘Execute ' to test the given user-defined command.

For convenience, you can assign a button to the defined command. Enabling one of the
‘Button ’ locations will add a button with the given command to the specified location. If you
want to edit the button, selecCommands=- Edit Buttons ’'. See Section 10.4 [Defining
Buttons], page 15%or a discussion.

Command Name Command Definition

If enabled, use argument field symbolically

F=8 DDD: Define Comimani

] .
Command Igvcﬁ 7 |6} graph display $arg0 B
Definition Record End || Edite | J

il
Button ~J Console _J| Source _] Data

Execut'el Close | Help |

Start Recording Assign Button

Defining GDB Commands

156 Debugging with DDD

When user-definedbs commands are executed, the commands of the definition are not printed.
An error in any command stops execution of the user-defined command.

If used interactively, commands that would ask for confirmation proceed without asking when
used inside a user-defined command. Mamps commands that normally print messages to say
what they are doing omit the messages when used in a user-defined command.

Command definitions are saved across sessions.

10.5.2 Defining Argument Commands using GDB

If you want to pass arguments to user-defined commands, you can enalf)e 'tt@gle button
in the Command Editor. Enabling)‘ ' has two effects:

e While recording commands, all references to the argument field are $gkavolicallyinstead
of literally. The argument field value is frozen tBerg0 ’, which is howGDB denotes the argu-
ment of a user-defined command. Wheps executes the command, it will replackarg0
by the current command argument.

e When assigning a button to the command, the command will be suffixed by the current contents
of the argument field.

While defining a command, you can toggle tke * button as you wish to switch between using
the argument field symbolically and literally.
As an example, let us define a commagmhtuntil that will set a breakpoint in the given
argument and continue execution.
1. Enter tontuntil ' in the ‘Commandfield.
2. Enable the() ’toggle button.
3. Now click on Record ’ to start recording. Note that the contents of the argument field change
to ‘$arg0 .
4. Click on Break at () 'to create a breakpoint. Note that the recorded breakpoint command
refers to $arg0 .
5. Click on ‘Cont ' to continue execution.
6. Click on ‘End’ to end recording. Note that the argument field is restored to its original value.
7. Finally, click on one of theButton ’ locations. This creates &ontuntil () " button

where () ’ will be replaced by the current contents of the argument field—and thus passed to
the ‘contuntil * command.

8. You can now either use th€ontuntil () " button or enter acontuntil ’ command at
the cpB prompt. (If you plan to use the command frequently, you may wish to defing’a *
command, which again callsontuntil ' with its argument. This is a nice exercise.)

There is a little drawback with argument commands: a user-defined commamBihas no
means to access the argument list as a whole; only the first argument (up to whitespace) is processed.
This may change in futureDps releases.

L 1f you useppp commands within command definitions, or if you include debugger commands that re-
sume execution, these commands will be realized transparentiyt@sommands—that is, they won't
be executed directly by the inferior debugger, but result in a command string being sent.td his
command string is then interpreted byp and sent back to the inferior debugger, possibly prefixed by
some other commands such thato can update its state. Sé&ection 10.5.3 [Commands with Other
Debuggers], page 15for a discussion.

Chapter 10: The Command-Line Interface 157

10.5.3 Defining Commands using Other Debuggers

If your inferior debugger allows you to define own command sequences, you can also use these
user-defined commands withirbD; just enter them at the debugger prompt.

However, you may encounter some problems:

e In contrast to the well-documented commands of the inferior debugger,does not know
what a user-defined command does. This may lead to inconsistencies betweemd the
inferior debugger. For instance, if your the user-defined commamdsets a breakpointypbp
may not display it immediately, becausen does not know thatdp’ changes the breakpoint
state.

e You cannot usepD ‘graph ' commands within user-defined commands. This is only natural,
because user-defined commands are interpreted by the inferior debugger, which does not know
aboutppp commands.

As a solutionppp provides a simple facility callealuto-commands. If DDD receives any output
from the inferior debugger in the fornpfefix command’, it will interpret command as if it had
been entered at the debugger pronpptfix is a user-defined string, for exampbidd: .

Suppose you want to define a commayttithat serves as abbreviation fgraph display
All the commandyd has to do is to issue a string

ddd: graph display argument
whereargument is the argument given tgd. UsingGpB, this can be achieved using teeho
command. In your~/.gdbinit ' file, insert the lines
define gd
echo ddd: graph display $argO\n
end
To complete the setting, you must also set tngoCommandPrefix ' resource to theddd:
" prefix you gave in your command. Ir/.ddd/init ', write:

Ddd*autoCommandPrefix: ddd:\
(Be sure to leave a space after the trailing backslash.)

Enteringgd foo will now have the same effect as enterigaph display foo at the de-
bugger prompt.

Please note: In your commands, you should choose some other prefixdtthn ™. This is
because auto-commands raise a security problem, since arbitrary commands can be executed. Just
imagine some malicious program issuing a string ligeefix shell rm -fr ~ " when being de-
bugged! As a consequence, be sure to choose youmpawix; it must be at least three characters
long.

158 Debugging with DDD

Appendix A: Application Defaults 159

Appendix A Application Defaults

Like any good X citizenppp comes with a large application-defaults file namBdd’. This
appendix documents the actions and images referencé&tifi,’ such that you can easily modify
them.

A.1 Actions

The followingDbDD actions may be used in translation tables.

A.1.1 General Actions

ddd-get-focus () Action
Assign focus to the element that just received input.

ddd-next-tab-group () Action
Assign focus to the next tab group.

ddd-prev-tab-group () Action
Assign focus to the previous tab group.

ddd-previous-tab-group () Action
Assign focus to the previous tab group.

A.1.2 Data Display Actions

These actions are used in thep graph editor.

end () Action
End the action initiated bgelect . Bound to a button up event.

extend () Action
Extend the current selection. Bound to a button down event.

extend-or-move () Action
Extend the current selection. Bound to a button down event. If the pointer is dragged, move
the selection.

follow () Action
Continue the action initiated kgelect . Bound to a pointer motion event.

graph-select () Action
Equivalent toselect , but also updates the current argument.

graph-select-or-move() Action
Equivalent toselect-or-move , but also updates the current argument.

160 Debugging with DDD

graph-extend () Action
Equivalent toextend , but also updates the current argument.

graph-extend-or-move () Action
Equivalent toextend-or-move |, but also updates the current argument.

graph-toggle () Action
Equivalent tatoggle , but also updates the current argument.

graph-toggle-or-move () Action
Equivalent tatoggle-or-move |, but also updates the current argument.

graph-popup-menu ([graph|node|shortcut D Action
Pops up a menugraph pops up a menu with global graph operationsde pops up a
menu with node operations, astortcut pops up a menu with display shortcuts.
If no argument is given, pops up a menu depending on the context: when pointing on a node
with the Shifh key pressed, behaves likbortcut ; when pointing on a without th&hift
key pressed, behaves likede ; otherwise, behaves asgfaph was given.

graph-dereference() Action
Dereference the selected display.

graph-detail () Action
Show or hide detail of the selected display.

graph-rotate () Action
Rotate the selected display.

graph-dependent () Action
Pop up a dialog to create a dependent display.

hide-edges([any|both|from|to D Action
Hide some edgesany means to process all edges where either source or target node are
selected.both means to process all edges where both nodes are seléaied. means to
process all edges where at least the source node is seléatedeans to process all edges
where at least the target node is selected. Defaalhys.

layout ([regular|compact 1, [[+]-] degrees]) Action
Layout the graph.regular means to use the regular layout algorithocompact uses
an alternate layout algorithm, where successors are placed next to their parents. Default is
regular . degrees indicates in which direction the graph should be layouted. Default is the
current graph direction.

move-selected(x-offset, y-offset) Action

Move all selected nodes in the direction givensbyffset andy-offset. x-offset andy-offset
is either given as a numeric pixel value, or agrid ’, or ‘-grid ’, meaning the current
grid size.

Appendix A: Application Defaults 161

normalize () Action
Place all nodes on their positions and redraw the graph.

rotate ([[+|-]degrees]) Action
Rotate the graph arounttgrees degreesdegrees must be a multiple of 90. Default i890.

select () Action
Select the node pointed at. Clear all other selections. Bound to a button down event.

select-all () Action
Select all nodes in the graph.

select-first () Action
Select the first node in the graph.

select-next() Action
Select the next node in the graph.

select-or-move() Action
Select the node pointed at. Clear all other selections. Bound to a button down event. If the
pointer is dragged, move the selected node.

select-prev () Action
Select the previous node in the graph.

show-edges([any|both|from|to D Action
Show some edgesany means to process all edges where either source or target node are
selected.both means to process all edges where both nodes are seléaied. means to
process all edges where at least the source node is sel¢éatadeans to process all edges
where at least the target node is selected. Defaaltys.

snap-to-grid () Action
Place all nodes on the nearest grid position.

toggle () Action
Toggle the current selection—if the node pointed at is selected, it will be unselected, and vice
versa. Bound to a button down event.

toggle-or-move () Action
Toggle the current selection—if the node pointed at is selected, it will be unselected, and vice
versa. Bound to a button down event. If the pointer is dragged, move the selection.

unselect-all () Action
Clear the selection.

162 Debugging with DDD

A.1.3 Debugger Console Actions

These actions are used in the debugger console and other text fields.

gdb-backward-character () Action
Move one character to the left. Boundlieft .

gdb-beginning-of-line () Action
Move cursor to the beginning of the current line, after the prompt. BouhtME

gdb-control (control-character) Action
Send the giverontrol-character to the inferior debuggetontrol-character must be specified
in the form " X, where X is an upper-case letter, d?".

gdb-command (command) Action
Executecommand in the debugger console. The following replacements are performed on
command.
e If command has the formname.. ’, insertname, followed by a space, in the debugger
console.

e All occurrences of() ' are replaced by the current contents of the argument f{gld *

gdb-complete-arg (command) Action
Complete current argument asctimmand was prepended. Bound {Gtrl+T).

gdb-complete-command() Action
Complete current command line in the debugger console. Bou@dB.

gdb-complete-tab (command) Action
If global TAB) completion is enabled, complete current argument asoifimand was
prepended. Otherwise, proceed as if {ifB) key was hit. Bound tgTAB).

gdb-delete-or-control (control-character) Action
Like gdb-control , but effective only if the cursor is at the end of a line. Otherwise,
control-character is ignored and the character following the cursor is deleted. Bound to
CuT+D).

gdb-end-of-line () Action

Move cursor to the end of the current line. Bound&tod.

gdb-forward-character () Action
Move one character to the right. BoundRaht .

gdb-insert-graph-arg () Action
Insert the contents of the data display argument figld.*

Appendix A: Application Defaults 163

gdb-insert-source-arg () Action
Insert the contents of the source argument fiéld .

gdb-interrupt () Action
If DDD is in incremental search mode, exit it; otherwise gallb-control(*C)

gdb-isearch-prev () Action
Enter reverse incremental search mode. BounGiorB).

gdb-isearch-next () Action
Enter incremental search mode. Bounddaol+p .

gdb-isearch-exit () Action
Exit incremental search mode. Bound&sG.

gdb-next-history () Action
Recall next command from history. BoundDown

gdb-prev-history () Action
Recall previous command from history. Bound.p.

gdb-previous-history () Action
Recall previous command from history. Boundup.

gdb-process([action [, args. . .]]) Action
Process the given event in the debugger console. Bound to key events in the source and data
window. If this action is bound to the source window, and the source window is editable,
perform action(args..) ~ on the source window instead; ittion is not given, perform
‘self-insert() "

gdb-select-all () Action
If the ‘selectAllBindings 'resource is set tMotif , perform beginning-of-line ’
Otherwise, performselect-all ’. Bound to (CirT+A).

gdb-set-line (value) Action

Set the current line toalue. Bound to(CirI+0).

A.1.4 Source Window Actions

These actions are used in the source and code windows.

source-delete-glyph() Action
Delete the breakpoint related to the glyph at cursor position.

164 Debugging with DDD

source-double-click ([text-action [, line-action [, function-action]]]) Action
The double-click action in the source window.

e If this action is taken on a breakpoint glyph, edit the breakpoint properties.

e |If this action is taken in the breakpoint area, invogdb-command(line-action) ’. If
line-action is not given, it defaults todreak () ’

e |If this action is taken in the source text, and the next character following the current
selection is (', invoke ‘gdb-command(function-action) '. If function-action is not
given, it defaults tolist () ’

e Otherwise, invoke gdb-command(text-action) ’. If text-action is not given, it de-
faults to ‘graph display () '

source-drag-glyph () Action
Initiate a drag on the glyph at cursor position.

source-drop-glyph ([action]) Action
Drop the dragged glyph at cursor positioaction is either move’, meaning to move the
dragged glyph, orcopy ’, meaning to copy the dragged glyph. If action is given, move’
is assumed.

source-end-select-word() Action
End selecting a word.

source-follow-glyph () Action
Continue a drag on the glyph at cursor position. Usually bound to some motion event.

source-popup-menu() Action
Pop up a menu, depending on the location.

source-set-arg() Action
Set the argument field to the current selection. Typically bound to some selection operation.

source-start-select-word() Action
Start selecting a word.

source-update-glyphs() Action
Update all visible glyphs. Usually invoked after a scrolling operation.

A.2 Images

DDD installs a number of images that may be used as pixmap resources, simply by giving a
symbolic name. For button images, three variants are installed as well:

e The suffix ~hi ’indicates a highlighted variant (Button is entered).
e The suffix “arm " indicates an armed variant (Button is pushed).
e The suffix “xx ’indicates a disabled (insensitive) variant.

Appendix A: Application Defaults

break_at
‘Break at () ' button.

clear_at
‘Clearat () ’button.

ddd
DDD icon.

delete
‘Delete () ' button.

disable
‘Disable ' button.

dispref
‘Display * () ' button.

display
‘Display () ' button.

drag_arrow
The execution pointer (being dragged).

drag_cond

A conditional breakpoint (being dragged).

drag_stop
A breakpoint (being dragged).

drag_temp
A temporary breakpoint (being dragged).

enable
‘Enable ’ button.

find _forward
‘Find>> () ' button.

find_backward
‘Find<< () ' button.

grey_arrow

The execution pointer (not in lowest frame).

165

Image

Image

Image

Image

Image

Image

Image

Image

Image

Image

Image

Image

Image

Image

Image

166
grey_cond

A conditional breakpoint (disabled).
grey_stop

A breakpoint (disabled).
grey_temp

A temporary breakpoint (disabled).
hide

‘Hide () ’ button.
lookup

‘Lookup () ' button.
maketemp

‘Make Temporary ' button.
new_break

‘New Breakpoint ' button.
new_display

‘New Display ' button.
new_watch

‘New Watchpoint ’ button.
plain_arrow

The execution pointer.
plain_cond

A conditional breakpoint (enabled).
plain_stop

A breakpoint (enabled).
plain_temp

A temporary breakpoint (enabled).
print

‘Print () ’ button.
properties

‘Properties ' button.

Debugging with DDD

Image

Image

Image

Image

Image

Image

Image

Image

Image

Image

Image

Image

Image

Image

Image

Appendix A: Application Defaults

rotate
‘Rotate () ’ button.

set
‘Set () '’ button.

show
‘Show () ’ button.

signalarrow

The execution pointer (stopped by signal).

undisplay
‘Undisplay () ' button.

unwatch
‘Unwatch () ' button.

watch
‘Watch () '’ button.

167

Image

Image

Image

Image

Image

Image

Image

168 Debugging with DDD

Appendix B: Bugs and How To Report Them 169

Appendix B Bugs and How To Report Them

Sometimes you will encounter a bugimp. Although we cannot promise we can or will fix
the bug, and we might not even agree that it is a bug, we want to hear about bugs you encounter in
case we do want to fix them.

To make it possible for us to fix a bug, you must report it. In order to do so effectively, you must
know when and how to do it.

B.1 Where to Send Bug Reports

Send bug reports faspp via electronic mail to
bug-ddd@gnu.org

B.2 Is it a DDD Bug?

Before sending in a bug report, try to find out whether the problem cause really lies within
A common cause of problems are incomplete or missing X or M*tif installations, for instance, or
bugs in the X server or M*tif itself. Runningpp as

$ ddd --check-configuration
checks for common problems and gives hints on how to repair them.

Another potential cause of problems is the inferior debugger; occasionally, they show bugs, too.
To find out whether a bug was caused by the inferior debuggenpunas

$ ddd --trace
This shows the interaction betweebnbD and the inferior debugger on standard error white>
is running. (If “--trace ' is not given, this interaction is logged in the file/:ddd/log

seeSection B.5.1 [Logging], page 1Y@ompare the debugger output to the outpubob and
determine which one is wrong.

B.3 How to Report Bugs

Here are some guidelines for bug reports:

e The fundamental principle of reporting bugs usefully is thieport all the facts. If you are
not sure whether to state a fact or leave it out, state it!

e Keep in mind that the purpose of a bug report is to enable someone to fix the bug if it is not
known. It is not very important what happens if the bug is already known. Therefore, always
write your bug reports on the assumption that the bug is not known.

e Your bug report should be self-contained. Do not refer to information sent in previous mails;
your previous mail may have been forwarded to somebody else.

e Please report each bug in a separate message. This makes it easier for us to track which bugs
have been fixed and to forward your bugs reports to the appropriate maintainer.

e Please report bugs in English; this increases the chances of finding someone who can fix the
bug. Do not assume one particular person will receive your bug report.

mailto:bug-ddd@gnu.org

170 Debugging with DDD

B.4 What to Include in a Bug Report

To enable us to fix ®@pD bug, youmustinclude the following information:
e Your DDD configuration. InvokeoDD as
$ ddd --configuration

to get the configuration information. If this does not work, please include at leasirthe
version, the type of machine you are using, and its operating system name and version number.

e The debugger you are using and its version (egib-4.17 ’ or ‘dbx as shipped with
Solaris2.6).

e The compiler you used to compilebD and its version (e.g.gcc-2.8.1).

e A description of what behavior you observe that you believe is incorrect. For example, “
gets a fatal signal” orspD exits immediately after attempting to create the data window".

e A log file showing the interaction betweeypp and the inferior debugger. By default, this
interaction is logged in the file-/.ddd/log . Include all trace output from thepp invo-
cation up to the first bug occurrence; insert own comments where necessary.

e If you wish to suggest changes to thep source, send us context diffs. If you even discuss
something in theDD source, refer to it by contexteverby line number.

Be sure to include this information gverysingle bug report.

B.5 Getting Diagnostics

B.5.1 Logging

If things go wrong, the first and most important information source isihe log file. This file,
created in~/.ddd/log ' (‘ ~' stands for your home directory), records the following information:

e Your DDD configuration (at the top)

e All programs invoked by pD, shown as$ program args.. '

e All DDD messages, shown &b essage’.

¢ All information sent frompDD to the inferior debugger, shown as* text'.

e Allinformation sent from the inferior debugger standard outputin®, shown as<- text’.
¢ Allinformation sent from the inferior debugger standard erraptm, shown as<= text’.!
e All information sent frompDD to Gnuplot, shown as>> text’.

¢ Allinformation sent from Gnuplot standard outputrioD, shown as<< text’.

e Allinformation sent from Gnuplot standard erroriobD, shown as<= text’.

e If DDD crashes, aDB backtrace of thepp core dump is included at the end.

This information, all in one place, should give you (and anyone maintaining a first insight
of what'’s going wrong.

1 Since the inferior debugger is invoked through a virtwal, standard error is normally redirected to
standard output, sopp never receives standard error from the inferior debugger.

Appendix B: Bugs and How To Report Them 171

B.5.1.1 Disabling Logging

The log files created bppp can become quite large, so you might want to turn off logging.
There is no explicibpp feature that allows you to do that. However, you can easily create a
symbolic linkfrom ‘~/.ddd/log ’to ‘/dev/null ', such that logging information is lost. Enter
the following commands at the shell prompt:

$ cd

$ rm .ddd/log

$ In -s /dev/null .ddd/log
$ _

Be aware, though, that having logging turned off makes diagnostics much more difficult; in case
of trouble, it may be hard to reproduce the error.

B.5.2 Debugging DDD

As long asppD is compiled with *g * (seeSection 4.1 [Compiling for Debugging], page)73
you can invoke a debugger arbb—evenpDD itself, if you wish. From withinbbpp, a special
‘Maintenance ' menu is provided that invokesDB on the runningppbD process. Seé&ec-
tion 3.1.9 [Maintenance Menu], page,46r details.

The ppD distribution comes with a.gdbinit ’ file that is suitable for debuggin@pp.
Among others, this defines @dd’ command that sets up an environment for debuggimgp
and a string ' command that lets you print the contentsmbp ‘string ' variables; just use
‘print var’ followed by ‘string ’

You can caus®DD to dump core at any time by sending iIS8§GUSR1 signal. bbD resumes
execution while you can examine the core file withs.

When debuggingpb, it can be useful to makepp not catch fatal errors. This can be achieved
by setting the environment variadiEddD_NO_SIGNAL_HANDLERf&fore invokingppp.

B.5.3 Customizing Diagnostics

You can use these additional resources to obtain diagnostics mboutMost of them are tied
to a particular invocation option.

appDefaultsVersion (class Version) Resource
The version of theopD app-defaults file. If this string does not match the version of the
currentbbD executableppp issues a warning.

checkConfiguration (class CheckConfiguration) Resource
If “on’, check the bppp environment (in particular, the X configuration), report any
possible problem causes and exit. S®ection 2.1.2 [Options], page 1&or the

‘--check-configuration " option.
dddinitVersion (class Version) Resource
The version of theoDD executable that last wrote the/:ddd/init " file. If this string

does not match the version of the curremtp executableppp issues a warning.

172 Debugging with DDD

debugCoreDumps (class DebugCoreDumps) Resource
If “on’, pDD invokes a debugger on itself when receiving a fatal signal. Ss®ion 3.1.9
[Maintenance Menu], page 4for setting this resource.

dumpCore (class DumpCore) Resource
If “on’ (default), bbD dumps core when receiving a fatal signal. Seetion 3.1.9 [Mainte-
nance Menu], page 4%or setting this resource.

maintenance (class Maintenance) Resource
If “‘on’, enables the top-levelMaintenance ' menu (seeSection 3.1.9 [Maintenance
Menu], page 4P with additional options. Seé&ection 2.1.2 [Options], page ,Lfor the
‘--maintenance ' option.

showConfiguration (class ShowConfiguration) Resource
If “on’, show thepDD configuration on standard output and exit. Seetion 2.1.2 [Options],
page 16for the --configuration " option.

showFonts (class ShowFonts) Resource

If “on’, show thepDD font definitions on standard output and exit. Saestion 2.1.2 [Op-
tions], page 1gfor the --fonts ’* option.

showlnvocation (class ShowlInvocation) Resource
If “on’, show thepDD invocation options on standard output and exit. Seetion 2.1.2
[Options], page 16for the “-help ' option.

showLicense(class ShowLicense) Resource
If “on’, show thepDD license on standard output and exit. Sgection 2.1.2 [Options],
page 1Gfor the --license ' option.

showManual (class ShowManual) Resource
If “on’, show thisbpD manual page on standard output and exit. If the standard output is a
terminal, the manual page is shown in a pa@&tAGERIless ormore). SeeSection 2.1.2
[Options], page 16for the --manual ' option.

showNews(class ShowNews) Resource
If* on’, show thepDD news on standard output and exit. Seestion 2.1.2 [Options], page 16
for the --news ' option.

showVersion (class ShowVersion) Resource
If “on’, show thepDD version on standard output and exit. S&ection 2.1.2 [Options],
page 1Gfor the --version ' option.

suppressWarnings (class SuppressWarnings) Resource
If “on’, X warnings are suppressed. This is sometimes useful for executables that were built
on a machine with a different X or M*tif configuration. By default, this f* '. See
Section 2.1.6 [X Warnings], page 2®r details.

Appendix B: Bugs and How To Report Them 173

trace (class Trace) Resource
If ‘on’, show the dialog betweenpp and the inferior debugger on standard output. Default
is ‘off ’. SeeSection 2.1.2 [Options], page for the --trace ' option.

174 Debugging with DDD

Appendix C: Configuration Notes 175

Appendix C Configuration Notes

C.1 Using DDD with GDB

SomecGDB settings are essential fomD to work correctly. These settings with their correct
values are:
set height 0
set width O
set verbose off
set annotate 1
set prompt (gdb)
DDD sets these values automatically when invokings; if these values are changed, there may
be some malfunctions, especially in the data display.

When debugging at the machine level witlbs 4.12 and earlier as inferior debugger, use a
‘display /x $pc ' command to ensure the program counter value is updated correctly at each
stop. You may also enter the command 11.gdbinit " or (better yet) upgrade to the most
recentGDB version.

C.1.1 Using DDD with WDB

HP’s WildeBeest ¥DB) is essentially a variant ofpB. To startbpD with wpB as inferior
debugger, use

ddd --wdb program
SeeSection C.1 [GDB], page 17f%or further configuration notes.

C.1.2 Using DDD with WindRiver GDB (Tornado)

DDD now supports WindRiver's version afpbs.! DDD can be integrated into theaunch’
window by placing thelaunch.tcl ’ script (see below) into the the directory/.wind
Currently,DDD only supports the PowerPC and has been only tested on a Solaris 2.6 host.
DpDD launches the version @fpB that is either in the current path, or the one specified on the
command line using the-debugger ' command.
Normally, the Tornado environment is set up by sourcing a script file which, among other things,
sets up the PATH variable.
It is suggested that a soft link for the versionais used for the target (i.egtibppc) be made
in the same directory:
bin> Is - gdb*
39 Mar 6 16:14 gdb -> /usr/wind/host/sun4-solaris2/bin/gdbppc*

1619212 Mar 11 1997 gdbppc*
bin>

This wayppD will start the correct version afpB automatically.

! This section was contributed by Gary Cliff from Computing Devices Canada Ltd.,
gary.cliff@cdott.com

mailto:gary.cliff@cdott.com

176 Debugging with DDD

It is also suggested that you useD’s execution window to facilitate parsing ofbB output.
SeeSection 2.5.3 [Debugger Communication], pagefd8details.

Tornado reads the default TCL scripts first, then the ones in the useénsi‘ * directory. The

following procedures can be cut and pasted into the udatsich.tcl ' file:
s A
Launch.tcl - Launch application Tcl user customization file.
#
Hta i
#
setupDDD - sets up DDD for use by the launcher
#
This routine adds the DDD to the application bar
#
SYNOPSIS:
setupDDD
#
PARAMETERS: N/A
#
RETURNS: N/A
#
ERRORS: N/A
#
proc setupDDD {} {
Add to the default application bar
objectCreate app ddd DDD {launchDDD}
}
N\ Y,

Appendix C: Configuration Notes 177
e A
HH#HHH
#

launchDDD - launch the DDD debugger
#
SYNOPSIS:
launchDDD
#
PARAMETERS: N/A
#
RETURNS: N/A
#
ERRORS: N/A
#
proc launchDDD {} {
global tgtsvr_selected
global tgtsvr_cpuid
if {$tgtsvr_selected == "' || $tgtsvr_cpuid == 0} {
noticePost error "Select an attached target first."
return
}
set startFileName /tmp/dddstartup.[pid]
if [catch {open $startFileName w} file] {
couldn’t create a startup file. Oh, well.
exec ddd --gdb &
}
else
{
write out a little /tmp file that attaches to the
selected target server and then deletes itself.
puts $file "set wix-tool-name ddd"
puts $file "target wtx $tgtsvr_selected"
puts $file "tcl exec rm $startFileName"
close $file
exec ddd --gdb --command=$startFileName &
}
}
N J

178 Debugging with DDD

s B
HH#HHH
#
Launch.tcl - Initialization
#
The user’'s resource file sourced from the initial Launch.tcl
#
Add DDD to the laucher
setupDDD
_ J

In order forppD to automatically display the source of a previously loaded file, the entry point
must be named eithevxworks_main ’or ‘main_vxworks '’

SeeSection C.1 [GDB], page 17%or further configuration notes.

C.2 Using DDD with DBX

When used for debugging Pascal-like programsp does not infer correct array subscripts and
always starts to count with 1.

With someDBX versions (notably SolarisBx), DDD strips C-style and €+-style comments
from theDpBX output in order to interpret it properly. This also affects the output of the debugged
program when sent to the debugger console. Using the separate execution window avoids these
problems.

In someDBXx versions (notably DE@®BxX and AlX DBX), there is no automatic data display.
As an alternativeppp uses thepBx ‘print ' command to access data values. This means that
variable names are interpreted according to the current frame; variables outside the current frame
cannot be displayed.

C.3 Using DDD with Ladebug

All pBX limitations (se€Section C.2 [DBX], page 1)%pply to Ladebug as well.

C.4 Using DDD with XDB

There is no automatic data displayxmB. As a workaroundppD uses thep’ command to
access data values. This means that variable names are interpreted according to the current frame;
variables outside the current frame cannot be displayed.

C.5 Using DDD with JDB

There is no automatic data displayJsins. As a workaroundppp uses thedump command to
access data values. This means that variable names are interpreted according to the current frame;
variables outside the current frame cannot be displayed.

In ypB 1.1, the dump’ and ‘print * commands do not support expression evaluation. Hence,
you cannot display arbitrary expressions.

Parsing ofyDB output is quite CPU-intensive, due to the recognition of asynchronous prompts
(any thread may output anything at any time, including prompts). Hence, a program producing
much console output is likely to slow dowrpp considerably. In such a case, have the program run
with ‘-debug ' in a separate window and attachs to it using the <passwd ' option.

Appendix C: Configuration Notes 179

C.6 Using DDD with Perl

There is no automatic data display in Perl. As a workaroun) uses thex’ command to
access data values. This means that variable names are interpreted according to the current frame;
variables outside the current frame cannot be displayed.

C.7 Using DDD with Bash

BASH support is rather new. As a programming languagesH is not feature rich: there are no
record structures or hash tables (yet), no pointers, package variable scoping or methods. So much
of the data display and visualization features of DDD are disabled.

As with any scripting or interpreted language like Perl, stepping a machine-language instructions
(commands Stepi/Nexti) doesn’t exist.

SomeBASH settings are essential fopD to work correctly. These settings with their correct
values are:
set annotate 1
set prompt set prompt bashdb$ Dbg less$ Dbg greater$ Dbg_space
DDD sets these values automatically when invokingH; if these values are changed, there
may be some malfunctions.

Pay special attention when the prompt has extra angle brackets (a nested shell) or has any paren-
thesis (is in a subshell). Quitting may merely exit out of one of these nested (sub)shells rather than
leave the program.

C.8 Using DDD with LessTif

DDD includes a number of hacks that makep run with LessTif,a free M*tif library with-
out loss of functionality. Since apbD binary may be dynamically bound and used with either an
OSF/Motif or LessTif library, theskesstif hack€an be enabled and disabled at run time.

Whether the lesstif hacks are included at run-time depends on the setting of the
‘lessTifVersion ' resource:

lessTifVersion (class LessTifVersion) Resource
Indicates the LessTif versianp is running against. For LessTif versiaty, the value isx
multiplied by 1000 plug—for instance, the valu@9 stands for LessTif 0.79 and the value
1005 stands for LessTif 1.5.
If the value of this resource is less than 1000, indicating LessTif 0.99 or eartierenables
version-specific hacks to makeop work around LessTif bugs and deficiencies.
If ppp was compiled against LessTif, the default value is the value of the
‘LessTifVersion * macro in ‘<Xm/Xm.h>". If bbb was compiled against OSF/Maotif,
the default value i4000, disabling all LessTif-specific hacks.

To set the lessTifVersion ' resource abpD invocation and to specify the version number
of the LessTif library, you can also use the optiefesstif-version ' version.

The default value of thdéssTifVersion "resource is derived from the LessTif libranypD
was compiled against (df0O00 when compiled against OSF/Motif). Hence, you normally don’t

180 Debugging with DDD

need to worry about the value of this resource. However, if you use a dynamically linked
binary with a library other than the omebp was compiled against, you must specify the version
number of the library using this resource. (Unfortunatelyp cannot detect this at run-time.)

Here are a few scenarios to illustrate this scheme:

e Your DDD binary was compiled against OSF/Motif, but you use a LessTif 0.88 dynamic library
instead. InvokeopD with ‘--lesstif-version 88 ",

e Your DDD binary was compiled against LessTif, but you use a OSF/Motif dynamic library
instead. InvokepDD with *--lesstif-version 1000 "

e Your DDD binary was compiled against LessTif 0.85, and you have upgraded to LessTif 0.90.
Invoke DDD with ‘--lesstif-version 90 "
To find out the LessTif or OSF/Motif versionbbd was compiled against, invokebp with the
‘--configuration " option.
In the bDD source, LessTif-specific hacks are controlled by the stiggstif_version "

Appendix D: Dirty Tricks 181

Appendix D Dirty Tricks

Do you miss anything in this manual? Do you have any material that should be added? Please
send any contributions dd@gnu.org .

mailto:ddd@gnu.org

182 Debugging with DDD

Appendix E: Extending DDD 183

Appendix E Extending DDD

If you have any contributions to be incorporated intap, please send them twld@gnu.org .
For suggestions on what might be done, see theTi@DOin the ppp distribution.

mailto:ddd@gnu.org

184 Debugging with DDD

Appendix F: Frequently Answered Questions 185

Appendix F Frequently Answered Questions

Seetheppbd www pagefor frequently answered questions not covered in this manual.

http://www.gnu.org/software/ddd/

186 Debugging with DDD

Appendix G: GNU General Public License 187

Appendix G GNU General Public License

Version 2, June 1991

Copyright(©) 1989, 1991 Free Software Foundation, Inc. 675
Mass Ave, Boston, MA 02111-1307, USA

Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.

Preamble

The licenses for most software are designed to take away your freedom to share and change
it. By contrast, the GNU General Public License is intended to guarantee your freedom to share
and change free software—to make sure the software is free for all its users. This General Public
License applies to most of the Free Software Foundation’s software and to any other program whose
authors commit to using it. (Some other Free Software Foundation software is covered by the GNU
Library General Public License instead.) You can apply it to your programs, too.

When we speak of free software, we are referring to freedom, not price. Our General Public
Licenses are designed to make sure that you have the freedom to distribute copies of free software
(and charge for this service if you wish), that you receive source code or can get it if you want it,
that you can change the software or use pieces of it in new free programs; and that you know you
can do these things.

To protect your rights, we need to make restrictions that forbid anyone to deny you these rights
or to ask you to surrender the rights. These restrictions translate to certain responsibilities for you
if you distribute copies of the software, or if you modify it.

For example, if you distribute copies of such a program, whether gratis or for a fee, you must
give the recipients all the rights that you have. You must make sure that they, too, receive or can get
the source code. And you must show them these terms so they know their rights.

We protect your rights with two steps: (1) copyright the software, and (2) offer you this license
which gives you legal permission to copy, distribute and/or modify the software.

Also, for each author’s protection and ours, we want to make certain that everyone understands
that there is no warranty for this free software. If the software is modified by someone else and
passed on, we want its recipients to know that what they have is not the original, so that any problems
introduced by others will not reflect on the original authors’ reputations.

Finally, any free program is threatened constantly by software patents. We wish to avoid the
danger that redistributors of a free program will individually obtain patent licenses, in effect making
the program proprietary. To prevent this, we have made it clear that any patent must be licensed for
everyone’s free use or not licensed at all.

The precise terms and conditions for copying, distribution and modification follow.

TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND
MODIFICATION

0. This License applies to any program or other work which contains a notice placed by the copy-
right holder saying it may be distributed under the terms of this General Public License. The

188 Debugging with DDD

“Program”, below, refers to any such program or work, and a “work based on the Program”
means either the Program or any derivative work under copyright law: that is to say, a work
containing the Program or a portion of it, either verbatim or with modifications and/or trans-
lated into another language. (Hereinafter, translation is included without limitation in the term
“madification”.) Each licensee is addressed as “you”.

Activities other than copying, distribution and modification are not covered by this License;
they are outside its scope. The act of running the Program is not restricted, and the output from
the Program is covered only if its contents constitute a work based on the Program (independent
of having been made by running the Program). Whether that is true depends on what the
Program does.

1. You may copy and distribute verbatim copies of the Program’s source code as you receive it,
in any medium, provided that you conspicuously and appropriately publish on each copy an
appropriate copyright notice and disclaimer of warranty; keep intact all the notices that refer to
this License and to the absence of any warranty; and give any other recipients of the Program
a copy of this License along with the Program.

You may charge a fee for the physical act of transferring a copy, and you may at your option
offer warranty protection in exchange for a fee.

2. You may modify your copy or copies of the Program or any portion of it, thus forming a work
based on the Program, and copy and distribute such modifications or work under the terms of
Section 1 above, provided that you also meet all of these conditions:

a. You must cause the modified files to carry prominent notices stating that you changed the
files and the date of any change.

b. You must cause any work that you distribute or publish, that in whole or in part contains
or is derived from the Program or any part thereof, to be licensed as a whole at no charge
to all third parties under the terms of this License.

c. Ifthe modified program normally reads commands interactively when run, you must cause
it, when started running for such interactive use in the most ordinary way, to print or dis-
play an announcement including an appropriate copyright notice and a notice that there is
no warranty (or else, saying that you provide a warranty) and that users may redistribute
the program under these conditions, and telling the user how to view a copy of this Li-
cense. (Exception: if the Program itself is interactive but does not normally print such
an announcement, your work based on the Program is not required to print an announce-
ment.)

These requirements apply to the modified work as a whole. If identifiable sections of that work
are not derived from the Program, and can be reasonably considered independent and separate
works in themselves, then this License, and its terms, do not apply to those sections when you
distribute them as separate works. But when you distribute the same sections as part of a whole
which is a work based on the Program, the distribution of the whole must be on the terms of
this License, whose permissions for other licensees extend to the entire whole, and thus to each
and every part regardless of who wrote it.

Thus, it is not the intent of this section to claim rights or contest your rights to work written
entirely by you; rather, the intent is to exercise the right to control the distribution of derivative
or collective works based on the Program.

Appendix G: GNU General Public License 189

In addition, mere aggregation of another work not based on the Program with the Program (or
with a work based on the Program) on a volume of a storage or distribution medium does not
bring the other work under the scope of this License.

3. You may copy and distribute the Program (or a work based on it, under Section 2) in object
code or executable form under the terms of Sections 1 and 2 above provided that you also do
one of the following:

a. Accompany it with the complete corresponding machine-readable source code, which
must be distributed under the terms of Sections 1 and 2 above on a medium customarily
used for software interchange; or,

b. Accompany it with a written offer, valid for at least three years, to give any third party, for
a charge no more than your cost of physically performing source distribution, a complete
machine-readable copy of the corresponding source code, to be distributed under the terms
of Sections 1 and 2 above on a medium customarily used for software interchange; or,

c. Accompany it with the information you received as to the offer to distribute corresponding
source code. (This alternative is allowed only for noncommercial distribution and only if
you received the program in object code or executable form with such an offer, in accord
with Subsection b above.)

The source code for a work means the preferred form of the work for making modifications to
it. For an executable work, complete source code means all the source code for all modules
it contains, plus any associated interface definition files, plus the scripts used to control com-
pilation and installation of the executable. However, as a special exception, the source code
distributed need not include anything that is normally distributed (in either source or binary
form) with the major components (compiler, kernel, and so on) of the operating system on
which the executable runs, unless that component itself accompanies the executable.

If distribution of executable or object code is made by offering access to copy from a designated
place, then offering equivalent access to copy the source code from the same place counts as
distribution of the source code, even though third parties are not compelled to copy the source
along with the object code.

4. You may not copy, modify, sublicense, or distribute the Program except as expressly provided
under this License. Any attempt otherwise to copy, modify, sublicense or distribute the Pro-
gram is void, and will automatically terminate your rights under this License. However, parties
who have received copies, or rights, from you under this License will not have their licenses
terminated so long as such parties remain in full compliance.

5. You are not required to accept this License, since you have not signed it. However, nothing
else grants you permission to modify or distribute the Program or its derivative works. These
actions are prohibited by law if you do not accept this License. Therefore, by modifying or
distributing the Program (or any work based on the Program), you indicate your acceptance of
this License to do so, and all its terms and conditions for copying, distributing or modifying
the Program or works based on it.

6. Each time you redistribute the Program (or any work based on the Program), the recipient
automatically receives a license from the original licensor to copy, distribute or modify the
Program subject to these terms and conditions. You may not impose any further restrictions
on the recipients’ exercise of the rights granted herein. You are not responsible for enforcing
compliance by third parties to this License.

190

7.

10.

11.

Debugging with DDD

If, as a consequence of a court judgment or allegation of patent infringement or for any other
reason (not limited to patent issues), conditions are imposed on you (whether by court order,
agreement or otherwise) that contradict the conditions of this License, they do not excuse you
from the conditions of this License. If you cannot distribute so as to satisfy simultaneously
your obligations under this License and any other pertinent obligations, then as a consequence
you may nhot distribute the Program at all. For example, if a patent license would not permit
royalty-free redistribution of the Program by all those who receive copies directly or indirectly
through you, then the only way you could satisfy both it and this License would be to refrain
entirely from distribution of the Program.

If any portion of this section is held invalid or unenforceable under any particular circumstance,
the balance of the section is intended to apply and the section as a whole is intended to apply
in other circumstances.

It is not the purpose of this section to induce you to infringe any patents or other property right
claims or to contest validity of any such claims; this section has the sole purpose of protecting
the integrity of the free software distribution system, which is implemented by public license
practices. Many people have made generous contributions to the wide range of software dis-
tributed through that system in reliance on consistent application of that system; it is up to the
author/donor to decide if he or she is willing to distribute software through any other system
and a licensee cannot impose that choice.

This section is intended to make thoroughly clear what is believed to be a consequence of the
rest of this License.

If the distribution and/or use of the Program is restricted in certain countries either by patents
or by copyrighted interfaces, the original copyright holder who places the Program under this
License may add an explicit geographical distribution limitation excluding those countries, so
that distribution is permitted only in or among countries not thus excluded. In such case, this
License incorporates the limitation as if written in the body of this License.

The Free Software Foundation may publish revised and/or new versions of the General Public
License from time to time. Such new versions will be similar in spirit to the present version,
but may differ in detail to address new problems or concerns.

Each version is given a distinguishing version number. If the Program specifies a version
number of this License which applies to it and “any later version”, you have the option of
following the terms and conditions either of that version or of any later version published
by the Free Software Foundation. If the Program does not specify a version number of this
License, you may choose any version ever published by the Free Software Foundation.

If you wish to incorporate parts of the Program into other free programs whose distribution
conditions are different, write to the author to ask for permission. For software which is copy-
righted by the Free Software Foundation, write to the Free Software Foundation; we sometimes
make exceptions for this. Our decision will be guided by the two goals of preserving the free
status of all derivatives of our free software and of promoting the sharing and reuse of software
generally.

NO WARRANTY
BECAUSE THE PROGRAM IS LICENSED FREE OF CHARGE, THERE IS NO

WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY APPLICABLE
LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT

Appendix G: GNU General Public License 191

12.

HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM “AS IS” WITHOUT
WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT
NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE RISK AS TO THE QUALITY
AND PERFORMANCE OF THE PROGRAM IS WITH YOU. SHOULD THE PROGRAM
PROVE DEFECTIVE, YOU ASSUME THE COST OF ALL NECESSARY SERVICING,
REPAIR OR CORRECTION.

IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRIT-
ING WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MAY MOD-
IFY AND/OR REDISTRIBUTE THE PROGRAM AS PERMITTED ABOVE, BE LIABLE
TO YOU FOR DAMAGES, INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR
CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OR INABILITY TO USE
THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF DATA OR DATA BE-
ING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD PARTIES
OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS),
EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBIL-
ITY OF SUCH DAMAGES.

END OF TERMS AND CONDITIONS

192 Debugging with DDD

How to Apply These Terms to Your New Programs

If you develop a new program, and you want it to be of the greatest possible use to the public,
the best way to achieve this is to make it free software which everyone can redistribute and change
under these terms.

To do so, attach the following notices to the program. It is safest to attach them to the start of
each source file to most effectively convey the exclusion of warranty; and each file should have at
least the “copyright” line and a pointer to where the full notice is found.

one line to give the program’s name and an idea of what it does.
Copyright (C) 19 yy name of author

This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License
as published by the Free Software Foundation; either version 2
of the License, or (at your option) any later version.

This program is distributed in the hope that it will be useful,

but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.

Also add information on how to contact you by electronic and paper mail.

If the program is interactive, make it output a short notice like this when it starts in an interactive
mode:

Gnomovision version 69, Copyright (C) 19 yy name of author
Gnomovision comes with ABSOLUTELY NO WARRANTY; for details
type ‘show w’. This is free software, and you are welcome

to redistribute it under certain conditions; type ‘show c’

for details.

The hypothetical commandshow w' and ‘show ¢’ should show the appropriate parts of the
General Public License. Of course, the commands you use may be called something other than
‘show w' and ‘show c’; they could even be mouse-clicks or menu items—whatever suits your
program.

You should also get your employer (if you work as a programmer) or your school, if any, to sign
a “copyright disclaimer” for the program, if necessary. Here is a sample; alter the names:
Yoyodyne, Inc., hereby disclaims all copyright
interest in the program ‘Gnomovision’
(which makes passes at compilers) written
by James Hacker.

signature of Ty Coon, 1 April 1989
Ty Coon, President of Vice
This General Public License does not permit incorporating your program into proprietary pro-
grams. If your program is a subroutine library, you may consider it more useful to permit linking

Appendix G: GNU General Public License 193

proprietary applications with the library. If this is what you want to do, use the GNU Library
General Public License instead of this License.

194 Debugging with DDD

Appendix H: Help and Assistance 195

Appendix H Help and Assistance

We have set up eailing list for generalbpp discussions. If you need help and assistance for
solving abppb problem, you find the right people here.

Send message to all receivers of the mailing list to:
ddd@gnu.org

This mailing list is also the place where newD releases are announced. If you want to
subscribe the list, or get more information, send a mail to

ddd-request@gnu.org
See alsghe pbpD www pagefor recent announcements and other news relatedin

mailto:ddd@gnu.org
mailto:ddd-request@gnu.org
http://www.gnu.org/software/ddd/

196 Debugging with DDD

Appendix I: GNU Free Documentation License 197

Appendix I GNU Free Documentation License

Version 1.1, March 2000

Copyright (C) 2000 Free Software Foundation, Inc.
59 Temple Place, Suite 330, Boston, MA 02111-1307 USA

Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.

0. PREAMBLE

The purpose of this License is to make a manual, textbook, or other written document “free”
in the sense of freedom: to assure everyone the effective freedom to copy and redistribute
it, with or without modifying it, either commercially or noncommercially. Secondarily, this
License preserves for the author and publisher a way to get credit for their work, while not
being considered responsible for modifications made by others.

This License is a kind of “copyleft”, which means that derivative works of the document must
themselves be free in the same sense. It complements the GNU General Public License, which
is a copyleft license designed for free software.

We have designed this License in order to use it for manuals for free software, because free
software needs free documentation: a free program should come with manuals providing the
same freedoms that the software does. But this License is not limited to software manuals; it
can be used for any textual work, regardless of subject matter or whether it is published as a
printed book. We recommend this License principally for works whose purpose is instruction
or reference.

. APPLICABILITY AND DEFINITIONS

This License applies to any manual or other work that contains a notice placed by the copyright
holder saying it can be distributed under the terms of this License. The “Document”, below,
refers to any such manual or work. Any member of the public is a licensee, and is addressed
as “you”.

A “Modified Version” of the Document means any work containing the Document or a portion

of it, either copied verbatim, or with modifications and/or translated into another language.

A “Secondary Section” is a named appendix or a front-matter section of the Document that
deals exclusively with the relationship of the publishers or authors of the Document to the
Document’s overall subject (or to related matters) and contains nothing that could fall directly
within that overall subject. (For example, if the Document is in part a textbook of mathe-
matics, a Secondary Section may not explain any mathematics.) The relationship could be a
matter of historical connection with the subject or with related matters, or of legal, commercial,
philosophical, ethical or political position regarding them.

The “Invariant Sections” are certain Secondary Sections whose titles are designated, as being
those of Invariant Sections, in the notice that says that the Document is released under this
License.

The “Cover Texts” are certain short passages of text that are listed, as Front-Cover Texts or
Back-Cover Texts, in the notice that says that the Document is released under this License.

A “Transparent” copy of the Document means a machine-readable copy, represented in a for-
mat whose specification is available to the general public, whose contents can be viewed and

198 Debugging with DDD

edited directly and straightforwardly with generic text editors or (for images composed of pix-
els) generic paint programs or (for drawings) some widely available drawing editor, and that
is suitable for input to text formatters or for automatic translation to a variety of formats suit-
able for input to text formatters. A copy made in an otherwise Transparent file format whose
markup has been designed to thwart or discourage subsequent modification by readers is not
Transparent. A copy that is not “Transparent” is called “Opaque”.

Examples of suitable formats for Transparent copies include plain ASCII without markup,
Texinfo input format, LaTeX input format, SGML or XML using a publicly available DTD,

and standard-conforming simple HTML designed for human modification. Opaque formats
include PostScript, PDF, proprietary formats that can be read and edited only by proprietary
word processors, SGML or XML for which the DTD and/or processing tools are not generally
available, and the machine-generated HTML produced by some word processors for output
purposes only.

The “Title Page” means, for a printed book, the title page itself, plus such following pages as
are needed to hold, legibly, the material this License requires to appear in the title page. For
works in formats which do not have any title page as such, “Title Page” means the text near the
most prominent appearance of the work’s title, preceding the beginning of the body of the text.

2. VERBATIM COPYING

You may copy and distribute the Document in any medium, either commercially or noncom-
mercially, provided that this License, the copyright notices, and the license notice saying this
License applies to the Document are reproduced in all copies, and that you add no other con-
ditions whatsoever to those of this License. You may not use technical measures to obstruct or
control the reading or further copying of the copies you make or distribute. However, you may
accept compensation in exchange for copies. If you distribute a large enough number of copies
you must also follow the conditions in section 3.

You may also lend copies, under the same conditions stated above, and you may publicly
display copies.

3. COPYING IN QUANTITY

If you publish printed copies of the Document numbering more than 100, and the Document’s
license notice requires Cover Texts, you must enclose the copies in covers that carry, clearly
and legibly, all these Cover Texts: Front-Cover Texts on the front cover, and Back-Cover Texts
on the back cover. Both covers must also clearly and legibly identify you as the publisher
of these copies. The front cover must present the full title with all words of the title equally
prominent and visible. You may add other material on the covers in addition. Copying with
changes limited to the covers, as long as they preserve the title of the Document and satisfy
these conditions, can be treated as verbatim copying in other respects.

If the required texts for either cover are too voluminous to fit legibly, you should put the first
ones listed (as many as fit reasonably) on the actual cover, and continue the rest onto adjacent
pages.

If you publish or distribute Opaque copies of the Document numbering more than 100, you
must either include a machine-readable Transparent copy along with each Opaque copy, or
state in or with each Opaque copy a publicly-accessible computer-network location contain-
ing a complete Transparent copy of the Document, free of added material, which the general

Appendix I: GNU Free Documentation License 199

network-using public has access to download anonymously at no charge using public-standard
network protocols. If you use the latter option, you must take reasonably prudent steps, when
you begin distribution of Opaque copies in quantity, to ensure that this Transparent copy will
remain thus accessible at the stated location until at least one year after the last time you dis-
tribute an Opaque copy (directly or through your agents or retailers) of that edition to the
public.

It is requested, but not required, that you contact the authors of the Document well before
redistributing any large number of copies, to give them a chance to provide you with an updated
version of the Document.

4. MODIFICATIONS

You may copy and distribute a Modified Version of the Document under the conditions of
sections 2 and 3 above, provided that you release the Modified Version under precisely this
License, with the Modified Version filling the role of the Document, thus licensing distribution
and modification of the Modified Version to whoever possesses a copy of it. In addition, you
must do these things in the Modified Version:

A. Use in the Title Page (and on the covers, if any) a title distinct from that of the Document,
and from those of previous versions (which should, if there were any, be listed in the History
section of the Document). You may use the same title as a previous version if the original
publisher of that version gives permission.

B. List on the Title Page, as authors, one or more persons or entities responsible for authorship
of the modifications in the Modified Version, together with at least five of the principal authors
of the Document (all of its principal authors, if it has less than five).

C. State on the Title page the name of the publisher of the Modified Version, as the publisher.
D. Preserve all the copyright notices of the Document.

E. Add an appropriate copyright notice for your modifications adjacent to the other copyright
notices.

F. Include, immediately after the copyright notices, a license notice giving the public permis-
sion to use the Modified Version under the terms of this License, in the form shown in the
Addendum below.

G. Preserve in that license notice the full lists of Invariant Sections and required Cover Texts
given in the Document’s license notice.

H. Include an unaltered copy of this License.

I. Preserve the section entitled “History”, and its title, and add to it an item stating at least the
title, year, new authors, and publisher of the Modified Version as given on the Title Page. If
there is no section entitled “History” in the Document, create one stating the title, year, au-
thors, and publisher of the Document as given on its Title Page, then add an item describing
the Modified Version as stated in the previous sentence.

J. Preserve the network location, if any, given in the Document for public access to a Trans-
parent copy of the Document, and likewise the network locations given in the Document for
previous versions it was based on. These may be placed in the “History” section. You may
omit a network location for a work that was published at least four years before the Document
itself, or if the original publisher of the version it refers to gives permission.

K. In any section entitled “Acknowledgements” or “Dedications”, preserve the section’s title,
and preserve in the section all the substance and tone of each of the contributor acknowledge-
ments and/or dedications given therein.

200 Debugging with DDD

L. Preserve all the Invariant Sections of the Document, unaltered in their text and in their titles.
Section numbers or the equivalent are not considered part of the section titles.

M. Delete any section entitled “Endorsements”. Such a section may not be included in the
Modified Version.

N. Do not retitle any existing section as “Endorsements” or to conflict in title with any Invariant
Section.

If the Modified Version includes new front-matter sections or appendices that qualify as Sec-
ondary Sections and contain no material copied from the Document, you may at your option
designate some or all of these sections as invariant. To do this, add their titles to the list of
Invariant Sections in the Modified Version’s license notice. These titles must be distinct from

any other section titles.

You may add a section entitled “Endorsements”, provided it contains nothing but endorsements
of your Modified Version by various parties—for example, statements of peer review or that the
text has been approved by an organization as the authoritative definition of a standard.

You may add a passage of up to five words as a Front-Cover Text, and a passage of up to 25
words as a Back-Cover Text, to the end of the list of Cover Texts in the Modified Version. Only
one passage of Front-Cover Text and one of Back-Cover Text may be added by (or through
arrangements made by) any one entity. If the Document already includes a cover text for the
same cover, previously added by you or by arrangement made by the same entity you are acting
on behalf of, you may not add another; but you may replace the old one, on explicit permission
from the previous publisher that added the old one.

The author(s) and publisher(s) of the Document do not by this License give permission to use
their names for publicity for or to assert or imply endorsement of any Modified Version.

5. COMBINING DOCUMENTS

You may combine the Document with other documents released under this License, under
the terms defined in section 4 above for modified versions, provided that you include in the
combination all of the Invariant Sections of all of the original documents, unmodified, and list
them all as Invariant Sections of your combined work in its license notice.

The combined work need only contain one copy of this License, and multiple identical Invariant
Sections may be replaced with a single copy. If there are multiple Invariant Sections with the
same name but different contents, make the title of each such section unique by adding at the
end of it, in parentheses, the name of the original author or publisher of that section if known,
or else a unique number. Make the same adjustment to the section titles in the list of Invariant
Sections in the license notice of the combined work.

In the combination, you must combine any sections entitled “History” in the various original
documents, forming one section entitled “History”; likewise combine any sections entitled
“Acknowledgements”, and any sections entitled “Dedications”. You must delete all sections
entitled “Endorsements.”

6. COLLECTIONS OF DOCUMENTS

You may make a collection consisting of the Document and other documents released under
this License, and replace the individual copies of this License in the various documents with a

Appendix I: GNU Free Documentation License 201

10.

single copy that is included in the collection, provided that you follow the rules of this License
for verbatim copying of each of the documents in all other respects.

You may extract a single document from such a collection, and distribute it individually under
this License, provided you insert a copy of this License into the extracted document, and follow
this License in all other respects regarding verbatim copying of that document.

AGGREGATION WITH INDEPENDENT WORKS

A compilation of the Document or its derivatives with other separate and independent docu-
ments or works, in or on a volume of a storage or distribution medium, does not as a whole
count as a Modified Version of the Document, provided no compilation copyright is claimed
for the compilation. Such a compilation is called an “aggregate”, and this License does not
apply to the other self-contained works thus compiled with the Document, on account of their
being thus compiled, if they are not themselves derivative works of the Document.

If the Cover Text requirement of section 3 is applicable to these copies of the Document, then
if the Document is less than one quarter of the entire aggregate, the Document’s Cover Texts
may be placed on covers that surround only the Document within the aggregate. Otherwise
they must appear on covers around the whole aggregate.

TRANSLATION

Translation is considered a kind of modification, so you may distribute translations of the
Document under the terms of section 4. Replacing Invariant Sections with translations requires
special permission from their copyright holders, but you may include translations of some or
all Invariant Sections in addition to the original versions of these Invariant Sections. You may
include a translation of this License provided that you also include the original English version
of this License. In case of a disagreement between the translation and the original English
version of this License, the original English version will prevail.

TERMINATION

You may not copy, modify, sublicense, or distribute the Document except as expressly pro-
vided for under this License. Any other attempt to copy, modify, sublicense or distribute the
Document is void, and will automatically terminate your rights under this License. However,

parties who have received copies, or rights, from you under this License will not have their
licenses terminated so long as such parties remain in full compliance.

FUTURE REVISIONS OF THIS LICENSE

The Free Software Foundation may publish new, revised versions of the GNU Free
Documentation License from time to time. Such new versions will be similar in spirit to
the present version, but may differ in detail to address new problems or concerns. See
http://www.gnu.org/copyleft/.

Each version of the License is given a distinguishing version number. If the Document specifies
that a particular numbered version of this License “or any later version” applies to it, you have
the option of following the terms and conditions either of that specified version or of any
later version that has been published (not as a draft) by the Free Software Foundation. If the
Document does not specify a version number of this License, you may choose any version ever
published (not as a draft) by the Free Software Foundation.

202 Debugging with DDD

ADDENDUM: How to use this License for your documents

To use this License in a document you have written, include a copy of the License in the docu-
ment and put the following copyright and license notices just after the title page:

Copyright (C) year your name.

Permission is granted to copy, distribute and/or modify this document
under the terms of the GNU Free Documentation License, Version 1.1
or any later version published by the Free Software Foundation;

with the Invariant Sections being list their titles, with the
Front-Cover Texts being list, and with the Back-Cover Texts be-
ing list.

A copy of the license is included in the section entitled “GNU
Free Documentation License”.

If you have no Invariant Sections, write “with no Invariant Sections” instead of saying which
ones are invariant. If you have no Front-Cover Texts, write “no Front-Cover Texts” instead of
“Front-Cover Texts beingjist”; likewise for Back-Cover Texts.

If your document contains nontrivial examples of program code, we recommend releasing these
examples in parallel under your choice of free software license, such as the GNU General Public
License, to permit their use in free software.

Label Index

Label Index

O v 156
3
3-DLINES ..ot 134
A
Abort ... 28, 46
ADOUL DDD .ttt 50
Alignon Grid ... 49
AllSignals ... 103
Apply oL AB
Attach 94
Attachto Process 43,94
Auto-align Displays on Nearest Grid

Point 130
Automatic Display of Button Hints .. 61
Automatic Display of Variable Values

.. 106
B
Backtrace ... 47
BashConsolecoiiiiiinn.. 44
Bash Reference 50, 59
Break ... 53 81
Breakpoints ... 47
Button ... 155
C
Cache MachineCode 143
Cache sourcefiles l 80
Change Directory ...t 43,92
Clear ...t 44,53, 82, 83
ClearLine ... A7
ClearUndo Buffer 64
ClearWindowciiiiiiiiiinn. 47
Close ..o AB
Close data window when deleting last

display ... 117
Cluster ... 114
Cluster Data Displays ~ 114
clustered 114
Color 133
Command..........ccooviiiiinieinn... 136, 155
Command History ..., 46
Command Tool..........ccviiiiiiinn, 44
Commands.............coiiiiiiiiii.. 42,46

Complete ... 4B

203

CONt o 57
Continue ... 45, 96, 98
Continue Automatically when Mouse

Pointeris Frozen 89
Continue Until Here 83
Continue Without Signal ~ 46,103
CONtOUr . 134
COPY i AL LT
CtrlH+AIS 51
Ctri+C IS o 51
CUL e 43,117
D
DataA2,48
Data Scrolling ol 130
Data Windowccooiiiiiiinn.. 45
DBXConsoleoiviiiiiiiiant. 44
DBX Referenceccooouat. 50, 59
DBX Settings oovieiii i 44
DDDwww Page..........coovviviiiiininant 60
DDD LICENSE ...t 50
DDD NEWS. .. 50
DDD Referencecoinan. 50, 59
DDD Splash Screen 64
DDDWWWPage........oovviiiiiiiiiannn, 50
Debug ppD. .o 49
DebugDDD.........viii 49
Debugger Reference 50, 59
Debugger Settings ... 44
Debugger Typecovviiiiiiiiiiiannnn. 34
DefineCommandcoo.t 47
Delete ...t 31,44, 82,84
Delete Breakpoint ...l 82
Detach Processccooiiunt. 43,95
Detect Aliases cooo.te. 48 121
Determine Automatically from

Arguments ... 34
Disable 83,84
Disable Breakpoint ~ 83
DiSp ™ 120
Display ..ooi 53, 107
Display () coovei 48
Display * ..o 120
Display *() veveie 121
Display Arguments 49 111
Display Line Numbers —¢ 48
Display Local Variables ~ 49, 111
Display Machine Code ¢ A8
Display Source Line Numbers ~ 79
Display Two-Dimensional Arrays as

Tables ... 119

204

Displayscoviiiiiiiiiiiii. .. A8
DoNothing ... 50
Down. ... 47,57,100
DumpCore......cooiiii 50
Dump Core NOW.coovviiiiiiinn, 49
E

Edit ... 42,43, 57,145
Edit>> .. 86, 155
Edit<< 155
Edit Buttons ... 47,151
EditMenuccc i 123
EditSource ... 48,145
EditSources i 145
EditThemesccciiiiiiiiinn.. 127
Enablel 83,84
Enable Breakpoint 33
Enable supported buttonsonly ~ 151
End ... 86, 155
Execute 155
Execution Window 44,94
EXit .o 28,43
F

File ... i ALA2
FileName 132
Find>> ... R2,76
FINd>>() ..o AT
Find<< .o 76
Find<<() ..., A8
Find Backwardcooal. 46
Find Case Sensitive 48
Find Forward 46
FindWordsOnly 48, 76
Finish 45, 56, 97
G

GDBConsole ... 44
GDBReferenceccoiiiiin.L. 50, 59
GDB Settings ooviiiii 44
GetCoreFile 32
H

Help oo 42,50, 59

Hide ... 53,109 110

Debugging with DDD

I

Iconify all windows atonce ~ 70
Ignore Count ... 85
Include CoreDump ...t 29
Interrupt ... 46, 56, 88
J

JDBConsole ... 44
JDB Referencecoiiiin. 50, 59
JDB SettingsS iiii e 44
K

Kill 46, 57, 104
L

Ladebug Console 44
Ladebug Reference 50,59
Ladebug Settings ... 44
Landscapeiiiiiiiiii 135
LayoutGrapho.cee. 49,130
Lefttoright ... 113
List Processes cciiiiiiiiiiiiii.. 95
Lookup ...ovv 52,75, 84
Lookup () vovenie 47
M

Machine Code Indentation 143
Machine Code Window 45
Maintenanceiiii.. 42,49
Make ..o 43,57, 146
MEeMOIY ... 48, 138
N

NewDisplayccooviiiiiiiiiiann., 124
NewGame............coiiiiiiiieena. . 49
NeXt ..o 45, 46, 56, 96
Next Instruction 45, 142
NeXti oo 56, 142

Label Index

O

Onitem ... 50
OpeN . o 13,74
OpenClasscovvviiiiii i 42,73
OpenCoreDump........ccovviiiii i 42
OpenProgramc.ooviuuus 42,73, 95
OpenRecentcviiiiiiiinnn.. 42,74
OpensSessionciviiiiiiiiin.n. 30,43
OpensSourcecooevviiiiiiiinnnnn.. 43,74
Orientation ... 133
Other .o 123
OVEIVIEW o\ttt 50
P

PaperSize i 133 135
Pass ... 102
Pastel 44,117
PerlConsole ... 44
Perl Reference 50, 59
Perl Settings ... 44
Placement 113 114
Plot ... 53,134, 137
PlotWindowcciiiiiininn.. 137
Portrait ... 135
Preferences il 44
Previous il 4B
Print 53, 88,102 106
Print () oo A8
PrintCommand 132
Print Graph 43,132
PrintPlot 135
Programo A2, 45
PYDBConsolecoiiiiiiiinnn.. 44
PYDB Reference 50, 59
PYDB Settings ccoiiiiiiiiii, 44
Q

QuitSearch ... 46
R

Record ...t 85, 155
Red Background 127
Redo.................oout 43,57, 60, 76, 100
Refer to Program Sources 80
Refresh ... 49
Refresh Displays — 113 119
Registers ... 47,142
Reload Source 48,145

Remove Menu...........cooviiiiiiinnn. 50

205
Reset 103
Restart ... 43
Rotate ... 53
Rotate Graph 49,131
Run.............covii .. 45,56,91
RUNAgain ... 45,91
Run in Execution Window 45, 93
S
Save DataAS ... 136
Save Options ... 44,103
Save SessionAS ... 29,43, 103
Scale ... 134
Search path for source files ~ 77
Select All ..o 44
SelectedOnlyl 132 135
Send. ... 103
St 53,119
Set Execution Position ... 97
Set Temporary Breakpoint ~ 83
SetValuecooiiiiiii 120
ShOW. ... K3, 109
Show All ... 110
ShowJust ... 110
ShoWMOre ... 110
Show Position and Breakpoints ~ 78
Signals ... 47,102
Small Titleso 125
SmallValues ... 125
SOUMCE .ottt 42, 47
Source indentation Y 4|
Source Window ...ttt 45
StatUS o 42, 47
Status Displays ...l 49,112
SteP oo 45, 56, 96
Step Instruction ... 45,142
StepPi . 56, 142
StOP ot 102
Suppress Values 116,125
Suppress X warnings ... 28
T
TabWidth 79
TemMp. 84
Theme. ... 126
Themes. ... e 127
Threads ..., 47,101
Threshold for repeated print
elements ... 119
TICTaCTOE o 49

206

TinyValues ... 125
TipoftheDayccoviiiiiiiiiiiin. 50
Tool Bar Appearance 66
Tool Buttons Location 57
Toptobottoml 113
U

uncluster ... 114
UNCOMPIESS ..ttt 63
UNdiSp oo 53,116
undisplay ... 107
undo................ 43,57, 60, 76, 100, 110,117
Undo Buffer Size ol 64
Uniconify When Ready 96
until o 45, 56, 97
unwatch ... 53
UD e 47,57,100
V

Debugging with DDD

VIEW Lo 42,44,134
W
Warn if Multiple DDD Instances are

Running ... 28
Watch ... 53,88
Watchpoints ... 48
Web Browsercciiiiiiiiiii, 63
What NOW?. ... 50, 59
When DDD Crashes......................... 49
Window Layout, 65
Writing into executable and core

files 146
X
XDBConsolec.covviiiiiiiii 44
XDB Referencecccciiiiiiin.. 50, 59

XDB Settings ooviiiiii 44

Key Index

Key Index

A

Alt+l o AA
Alt+2 e 4D
Alt+3 e 4D
Alt+4 45, 48
Alt+8 4D
A A v
AltHA e A8
AtHG o AD
AltHl e A8
Alt+L . A9
AltEN e A8
Alt4R A9
Alt+U o A9
AltAW e A8
AltHY e A9
C

Ctrl+, 48
Ctrl+- 48
G, 47
Ctrl a7
Ctrl= 48
CtrlH\ 28, 46
CtrlHA 44
Ctrl+B o 46, 149
Ctrl+C . 28, 44, 46, 51, 88
CtrlHD o 28
Ctrl+Down ... i 47,100
Ctrl+F 46, 149
Ctrl+FL 59
Ctrl+lns ... AL
CtriI+L o 49
CtrlHM 43
CtrlHN 43
CtrlH+O 42
Ctrl+Q .o 15, 28, 43
Ctrl+S 43
Ctrl+Shift+A ... 44,51
Ctri+U 44, 47
Ctri+Up oo 47,100
CtrlHV 44
Ctrl+W 43
X 43
Ctrl+Y 43
Ctrl+Z 43
D

Down.......................... 46,108 129 148

207
E
ESC .o 46
ESC....co 28,51, 88,149
F
S 59
Fl2 49
F 45
F 45
Fa . 46
B 45
FO . 45
B 45
F8 45
FO 45
H
HOMeE. .. 51
L
Left o 108 129
R
Return ... 46, 148
Right ... 108 129
S
Shift o 108
Shift+Ctrl+L ... 48
Shift+Ctrl+U ... 47
Shift+Ctrl+V 48
Shift+Del ... 43
Shift+F5 . A5
Shift4F6 .. A5
Shift+FO A6
Shift+lns ... 44
T
Tab o 46
TAB . 52
U

Ut 46,108, 129, 148

208 Debugging with DDD

Command Index

Command Index

C

CONE oot 89, 100
contuntil ... 156
D

directory ... 7
OWN .. 100
F

fille o 34
G

OCOME ot 32
OO . 157
graph apply theme 127
graph disable display ~ 110
graphdisplay 108 112
graph enable display — 110
graphplot 133
graphrefresh 113
graph toggle theme 127
graph unapply theme 127
QUNZIP ottt e 63
074 63
H

hbreak 87
help ... 59
K

209
M
1017071 A 137
P
Print 106
Q
QUIt 28,89
R
FEMS L 32
replot ... 136
IS 32
TUN o 91
S
setenvironment ... 92
setoutput ... 136
setterm ... 136
T
targetremote ... 34
thbreak 87
11 39
U
unset environment ... 92
UP e e 100
Z
ZCal . 63

210 Debugging with DDD

Resource Index

Resource Index

A

activeButtonColorKey

align2dArrays ...

appDefaultsVersion

arrayOrientation

autoCloseDataWindow

autoDebugger ...
autoRaiseMenuo

autoRaiseMenuDelay

autoRaiseTool ...,

B

bash ... 37

bashDisplayShortcuts

bashinitCommands
blockTTYInput ...,
break atl
bufferGDBOutput ...
bumpDisplays ...

buttonCaptionGeometry

buttonCaptions i
buttonColorkey ... il
buttonDocs ...

buttonlmageGeometry

buttonlmagesl
buttonTips ...

C

cacheGlyphlmages78
cacheMachineCode
cacheSourceFiles

checkConfiguration

checkGrabDelayoool.
checkGrabsiiiiiii i
checkOptions cciiiii i
CLASSPATH ...
clear_at ...
clusterDisplays ...t
commandToolBarc.oov...
commonToolBarccoviiiiiii.n.
consoleButtons
consoleHasFocus

continterruptDelay
cutCopyPasteBindings

211

D

dataButtons ... 153
dataFont ... 69
dataFontSize 69
dbxDisplayShortcuts ~ 124
dbxInitCommandscooenet. 36
dbxSettings ... 36
ddd ... 165
DDD. . 92
DDD_NO_SIGNAL_HANDLERS........... 171
DDD _SESSION......ooiiiiii e 61
DDD_SESSIONS. ...t 32
DDD_STATE ..ot 60
dddinitVersion ..., 171
debugCoreDumpscooviiiiiiiin.. 172
debugger ... 35
debuggerCommand 35
decorateTool cooiiiiiiiiiiin.. 59
defaultFont 68
defaultFontSize ... 68
delete ... 165
deleteAliasDisplays ~ , 122
detectAliases ... 122
disable ... 165
disassemble ...l 143
display ... 165
DISPLAY ... 24,32
displayGlyphs ... 78
displayLineNumbers —, 79
displayPlacement 113
displayTimeout ..., 38
dispref ... 165
drag_arrow ... 165
drag_ cond ... 165
drag_Stop ..o 165
drag temp ... 165
dumpCore ... 172
E

editCommand ...t 145
EDITOR. ..ot 145
enable 165
expandRepeatedValues 119
F

filterFiles ... 80
find_backwardl 165
find_forward l 165
findCaseSensitive l 79
findWordsOnly ... il 79

212

fixedWidthFont 69
fixedWidthFontSize \ 69
flatDialogButtons ~ 55
flatToolbarButtons 55
fontSelectCommand 69
G

gdbDisplayShortcuts ~ 124
gdblnitCommands 35
gdbSettings ... 35
getCoreCommandcccouinnn. 32
globalTabCompletion 148
glyphUpdateDelay — 78
grabAction ... 89
grabActionDelay ..., 89
OreY_AITOW ottt i i niee s 165
grey_cond ... 166
grey _Stop oo 166
grey temp ... 166
grouplconify 70
H

hide ... 166
hidelnactiveDisplays ~ 128
I

indentCode ..., 143
indentScript ... 79
indentSource 79
initSymbols ... 37
J

jdbDisplayShortcutsl 125
jdblnitCommands 36
jdbSettings ... 36
L

labelDelimiter 154
lessTifVersion l 179
lineBufferedConsole 93
lineNumberWidth 79
linesAboveCursor cciiiinninn.. 80
linesBelowCursor cciiiininn.. 80
listCoreCommand 33
listDirCommandccivvnnn. 33
listExecCommand 34
listSourceCommand 34

Debugging with DDD

looKUp oo 166
M

maintenance ...l 172
maketemp ... 166
maxDisassemble 143
maxGlyphs 78
maxUndoDepthl 64
maxundoSize ... 64
N

new breakiiiiiiiiiiiiian, 166
new _display 166
new watchl 166
O

openDataWindowccovuvnnn. 70
openDebuggerConsole 70
openSelection 38
openSourceWindow70
P

PAGERo 92,172
pannedGraphEditor — 130
paperSize ... 133
periDisplayShortcuts ~ 125
perlinitCommands 37
periSettings ... i 37
plain_arrow 166
plain_cond 166
plain_stop ... 166
plain_temp ... 166
plot2dSettings i 138
plot3dSettings ... o 138
plotCommandcoiiat. 137
plotinitCommands 137
plotTermTypecoiiiiiiiiiiaen, 137
plotWindowClass ooo.... 137
plotWindowDelay — 137
popdownHistorySize l 70
positionTimeout —oa.L. 39
PrNt 166
printCommandciiiiinn.. 133
Properties ... 166
psCommand................coiiiiii e 95
pydbDisplayShortcuts 125
pydbInitCommands 37
pydbSettings ... 37

Resource Index

Q

questionTimeout —coiiiin... 39
R

rotate ... 167
rshCommand..............cooiiiiiiiiienn.. 33
runinterruptDelay ...l 39
S

saveHistoryOnExit 149
saveOptionsOnExit ovuen 61
selectAllBindings, 52
separateDataWindow 4 66
separateExecWindow 94
separateSourceWindow 66
Sl L e 167
SHELL. ..ot Q2
SNOW . .o 167
showBaseDisplayTitles 128
showConfiguration — 172
showDependentDisplayTitles — 128
showFonts ... 172
showlnvocation o 172
showlicense ...t 172
showManualcoc 172
showMemberNames....................... 111
ShOWNEWS. ... 172
showVersion ...t 172
signal_arrow ... 167
sortPopdownHistory 70
sourceButtons ... 153
sourceEditing ... 145
sourcelnitCommands 36
splashScreenl 65
splashScreenColorkey — 65
startupTipCount ..ot 62
sStartupTipS o 62
statusAtBottom ... 67
stickyTool ... 58
stopAndContinue ... 39
structOrientation ... 111
suppressThemeooet. 128
suppressWarnings —o0ien.. 28,172
synchronousDebugger 39

213

T
tabWidth 79
TERM ... 92,94
TERMCAP. ... 92
termCommand ...t 94
terminateONEOF t 39
ermType ..o 4
themes ... 128
1] 0T 7 P 62
toolbarsAtBottom ...l 66
toolBUttoNs ... 154
toolRightOffset ..., 58
toolTopOffset ...t 58
trace ... 173
typedAliases ... 122
U

uncompressCommand 63
undisplay ... 167
uniconifyWhenReady 71
unwatch ... 167
useSourcePath 80
useTTYCommand..............coovviiinnn. 39
V

valueDocs 106
valueTips ..o 106
variableWidthFont 68
variableWidthFontSize — \ 68
verifyButtons ... 154
vsIBaseDefs 128
vsiDefs . 129
vslLibrary ... 129
vslPath 129
W

warnlfLocked 28
watCh ... 167
WWWBROWSER. ... 63
wwwCommand ... 63
WWWPAJE. ...t 64
X

xdbDisplayShortcuts ~ 125
xdblnitCommands 36
xdbSettings ... 36
XEDITOR. ..ot 145

214 Debugging with DDD

File Index

File Index

EMACS ..ttt e 150
gdbinit ... 25,34,171
e 23,60
C

Changelogov i 3
D

dbX .o 17
DAd. ... 80, 71, 159
ddd-3.3.9-html-manual.tar. gz~ 2
ddd-3.3.9-pics.tar.gz =~ ...l 2
ddd-3.3.9.tar.gz = ... 2
ddd- version-html-manual.tar.gz ~ 3
ddd- version-pics.tar.gz = ...l 3
ddd- version.tar.gz 3
E

BMACS . .o e it 63, 145 150
emacsclient ... 145
EMACSSEIVEl ...t 145
F

figadev ... 132
file 33,34
G

gdb .. 17
gdbserver ... 34
gnuclient ... 145
gnudoit ... 63
gnuplot ... 134
ONUSEIV e e 145
I

NIt 60
J

java.prof 27

215

L

ladebug ... 17
eSS 172
00 .« 21, 23,136,170
IYNX e 63
M

MAKE. ..ot 146
0 1T0] > 172
MOSAIC vttt e et e e ieieaens 63
mozilla ... 63
N

NEtSCAaPe o.iiiiiii i 63
@)

0] 33
P

Perl 17
DS 95
pydb ... 17
R

remsh ... 33
FSh e 33
S

SaMPle ... 5
sample.C ... 5,14
SESSIONS ittt 32
SSh o 33
Sy 93
suppress.vsl 128
T

TODQ .. 3.
transfig ... 132
V

VI e 145

216

Debugging with DDD

XEMACS .\ viiieiiiinnnns 63, 145, 150
XAG 132
xfontsel ... 69
XINGE e e e e e e 136
D2 1.2 31
XEBI N e e 94
XXQAD L 151

Concept Index

Concept Index

A

Aborting execution....................... 28,46
Ada. ..o 1.
Aliases, detecting....................oees. 121
Animating plots...........oooii i 136
Arguments, displaying. 111
Arguments, of the debugged program........ 92
Arguments, program............cooeiieaninn.. 91
Array slices ..o 117
Array, artificialL 117
Array, plotting. 133
Artificial arrays. 117
Assertions and breakpoints.................. 85
Assertions and watchpoints.................. 87
ASSIGNMENE. . ..o 119
ASSIStANCE. . ..o 195
Auto-command.............oin 157
Automatic Layout................coooiiinnn. 131
B

Balloonhelp...............cooiii i 59
Bash. ... 1
Bash, invokingppp with...................... 16
Boxlibrary.............cooiii 4
Breakpoint.............ooiiii 81
Breakpointcommands...................... 85
Breakpoint commands, vs. conditions....... 85
Breakpoint conditions. 84
Breakpointignorecounts.................... 85
Breakpoint properties.................o.o..s. 84
Breakpoint, copying...............ooiit 86
Breakpoint, deleting. 82
Breakpoint, disabling......................... 83
Breakpoint, dragging.oooeiat. 86
Breakpoint, editing.................. ... 84
Breakpoint, enabling......................... 83
Breakpoint, hardware-assisted............... 87
Breakpoint, lookingup................... ... 86
Breakpoint, moving................ooii 86
Breakpoint, setting................... ... 81
Breakpoint, temporary....................... 83
Breakpoint, toggling..................o. 53
Breakpoints, editing.......................... 86
Buttoneditor. ... 151
Buttontip.......oooii 59
Button tip, turningoff. 61
Buttons, defining. ...l 151

217

C

o 1.
ot L
Callstackovviiii a8
Chill ... 1
Class, 0pening.covvvviii i 73
Clippboard................ccoviiii e 43
Clipboard, putting displays................. 117
Cluster. . ..o 114
Cluster, and plotting........................ 135
Clustered display, creating.................. 108
Command completion...................... 147
Command history.coooiiin... 148
Commandtool.............coooiiiiiiii 41
Command, argument..............o.oouenn. 156
Command, auto.cveiiiiie e 157
Command, breakpoint....................... 85
Command, defining......................... 154
Command, defining iepB................... 155
Command, defining with other debuggers.. 157
Command, recording....................... 155
Command, repeating...............coovu.n. 148
Command, searching....................... 148
Command, user-defined.................... 154
Command-line debugger...................... 1
CompactLayout............cooviviinnnnn. 131
Completion of commands.................. 147
Completion of quoted strings................ 148
Conditions on breakpoints................... 84
Context-sensitive help....................... 59
Continue, at differentaddress............... 97
Continue,oneline............................ 926
Continue, tolocation......................... 97
Continue, tonextline........................ 96
Continue, until function returns............... 97
Continue, until greater line is reached. 97
Continuing executionocovivn.. 96
Continuing process execution. 95
Contour lines, inplots....................... 134
Contributors...........ooii i 3
Copying displays............ccovveiinan.. 117
Coredump,0opening..........coevvevnennnns 74
Corefile,insessions......................... 29

Cuttingdisplays...........coooiiiiiiiia... 117

218

D

DataTheme............cooviiiiiiiiinnnn.. 125
Datawindow................cocvvviviean AL
DataWindow. ..., 107
DBX ottt ettt e e 1.
DBX, invokingppp with....................... 16
Debuggerconsole ..., 41
Debugger, onremote host.................... 32
DebuggingbDD ..o .ve i 171
Debuggingflags.........................L. 146
Debugging optimized code................... 73
Default session...........coiiiiiiiiiiin. 30
Deferred display................cooeiiiit 108
Deferred display, insessions................ 30
Deleting displays........................ 53,116
Deleting displays, undoing 117
Dependentdisplay.............coovinann.. 108
Dereferencing..............ooooiiiiiiat 120
Detail toggling with Show/Hide " 53
Detall, hiding...................oooiiiiinat. 109
Detall, showing.................coooiintt. 109
Directory, of the debugged program........... 92
Disabled displays.............cocoiiiit 110
Disabling displays, undoing................. 110
Display. ..o 107
Display Editor.oooiiiiiii 115
Displayname............coooiiiiiiiiiinn., 108
Display positioncoooiea... 108
Display selection........................... 108
Display title. ... 108
Displayvalue ...t 108
Display, aligningongrid.................... 130
Display, clustered........................... 108
Display, clustering.......................... 114
Display, copying........c.cvviiiiiininnn... 117
Display, creating...................ooo.e. 53, 107
Display, customizing........................ 125
Display, cuttingccooiiiiiie. 117
Display, deferred.coooias, 108
Display, deleting........................ 53,116
Display, dependent.................... 108 120
Display, disabled. 110
Display, frozen..................cooiiii.. 39
Display, hiding details....................... 109
Display, locked. ...t 89
Display, moving. ..., 129
Display, pasting............coooviiiinn.n. 117
Display, placement......................... 113
Display, plotting the history.................. 135
Display, refreshing.......................... 113
Display, rotating. 53 110

Display, selecting........................... 108

Debugging with DDD

Display, setting............ccovvvivian... 32,53
Display, setting when invokingop 24
Display, showing details. 109
Display, suppressingcoovveann.. 116
Display, toggling detail....................... 53
Display, updating................coovenn... 113
Displayingvalues...................... 105 107
Displaying values withDisplay ' 53
Dumpingvalues..............cooviiiinnt. 105
E

Bdge ..o 120
Edgehint................ ...l 121,131
Editing sourcecode ...l 145
Emacs, integratingop ...l 150
Emergencyrepairs..........oooiiiiiiin.. 146
Environment, of the debugged program...... 92
EPROM code debugging 87
Examining memory contents. 138
Execution position, dragging................. 97
Executionwindow........................ 41,93
Execution, “undoing”............. ..ol 100
Execution, aborting....................... 28,46
Execution, at differentaddress............... 97
Execution, continuing........................ 96
Execution, interrupting................... ... 28
Execution, interrupting automatically. 39
Execution,oneline..................... 96
Execution, to location. 97
Execution, tonextline....................... 96
Execution, until function returns.............. 97
Execution, until greater line is reached....... 97
EXItiNg. . ..o 28
Extending display selection................. 108
F

FIG file, printingas............ooooeiiat. 132
Files,opening. ..., 73
Findingitems..............cooiiiiiiiiii 52
FoNts. ..o 67
FORTRAN. .. 1
Frame 98
Frame changes, undoing.................... 100
Framenumber.......... ..., 99
Frame pointer. ..., Q9
Frame, selecting.................cooiint. 100

Concept Index

G

Gl i 73
GDB et ettt e e 1.
GDB, invokingppp with ... 16
Glyph. ..o 78
GPL . 3
Grabbed pointer. ... 89
Graph, printing ... 131
Graph,rotating.............coooiiiii . 131
Grid, aligning displays., 130
Grid, inplots.........cooiiiii 134
H

Help. oo K9, 195
Help, inthe statusline....................... 59
Help,onbuttons............................. 59
Help,oncommands 59
Help,onitems...........cocoiiiiiiiiinnn 59
Help, whenstuck. 59
Hiding display details....................... 109
Historicmode. ...t 100
HIStOry. ..o 4.
History, plotting. ...t 135
Host,remote.............coiiiiii i 32
HTMLmanual................cooiiiiiin. .. 2
I

IBMGL file, printingas. 132
Icon, invokingppp as.ovvv i 24
Ignore count........ooviviiiii e 385
Indent, sourcecode.ooviiiii.... 79
Inferior debugger................oi 1
Inffomanual ... 2
Initial frame. o 98
Innermostframe. ...t 98
Input of the debugged program............... 92
Instruction, stepping............cooiiiii. 142
IntegratingbDD ov v 150
InterruptingbdDD . ..o 28
Interrupting execution. 28
Interrupting execution, automatically. 39
INVOKING. ..o 15
J

Java ... 1.
TDB et s 1
JDB, invokingppp with. ... 15

Jump to differentaddress.................... 97

219

K

Killing DDD .o v 28
Killing the debugged program............... 104
L

LM fctkehaus, Dorothea................... 3,4
Ladebug. ... 1
Ladebug, invokingppp with................... 16
License.ooiii 3,187
License, Documentation.................... 197
License, showing on standard output......... 19
Linenumbers..............cooiiiiiiiiint 79
Local variables, displaying 111
LOgOiNg. .« v oo 170
Logging, disabling.......................... 171
Looking up breakpoints...................... 86
Lookingupitems..........coovviiiiinnninnn. 52
Lookups, redoing...........coooviiiiiiiinn.. 76
Lookups, undoing.oovvviiiii i 76
M

Machine code window. 41
Machine code, examining.................. 141
Machine code, executing................... 142
Mailing list. ... 195
Make, invoking. il 146
Manual, showing on standard output......... 20
Memory, dumping contents................. 105
Memory, examining..........c..coeeeeeenan.. 138
Modula-2. ... oo 1l
Modula-3.........coii 1
Mouse pointer, frozen 89
N

Name, display..........ccoviiiiinat. 108
News, showing on standard output. 20
NORA . .. 4.
O

Optimized code, debugging.................. 73
OpPLioN. ..o 15
Outermostframe...............oooiiiat. 98
Output of the debugged program............. 92

220

P
Pascal........cooiiii 1.
Pasting displays ... 117
Patching ... 146
PDFmanual..............ooooiiiii 2
Perl. 1.
Perl, invokingppp with 15
PIC file, printingas..............oooiiit 132
Pipe. . 92
Placement.............cooiiiiiiiiiiiian.., 113
Plot appearance.............coooviieien... 134
Plot, animating ..., 136
Plot, exporting..........cooviiiiiii i 136
Plot, printing. ... 135
Plot,scrolling ..., 134
Plotting style. ...t 134
Plotting values..................... 53,105 133
Pointers, dereferencing..................... 120
Position, of display 108
PostScriptmanual ... 2
PostScript, printingas...................... 132
Print, output formats........................ 106
Printingplots...........ooii i 135
Printing the Graph.......................... 131
Printingvalues......................... 105,106
Printing values withPrint " 53
Process, attaching........................... 94
Programarguments.......................t. 91
Program counter, displaying................ 142
Program output, confusing................... 93
Program, onremote host.................... 34
Program, opening...............coviein... 73
Program, patching.....................oo.t 146
PSG . 4.
PYDB sttt ettt et 1.
PYDB, iInvokingppp with...................... 15
Python........oooo 1
Q

QUIttING. ..o oo 28
Quotesincommands...............oviunn.. 148
R

Readline..............oooiiiiii . 150
Recompiling ... 146
Recordingcommands...................... 155
Redirecting 1/0 of the debugged program. ... 92
Redirecting 1/O to the execution window. 93
Redirection ... 92
Redirection, to execution window. 39,93

Debugging with DDD

Redoingcommands................ccvvvnnn. 60
Redoing lookups. ... 76
Refreshing displayed values 113
Registers, examining....................... 142
Reloading source code..................... 145
Remote debugger ...t 32
Remote host. ...t 32
Remote program. ..., 34
Resource, setting when invokimgnp........... 24
Resources. ... 60
roM code debugging. ... 87
Rotating displays withRotate ' 53
Rotating thegraph.......................... 131
Running the debugged program.............. 91
S

Scalars, plotting.ol 134
Scales,inplots.............oooiiiiii 134
Scrolling. ... 130
Search, usingFind>> "............... ... 52
Searchingcommands...................... 148
Selectingframes...............cooiiii. 100
Selecting multiple displays................. 108
Selecting single displays................... 108
SESSION . .ttt 29
Session,active. 30
Session, default ... 30
Session, deleting ...l 31
SesSioNn, OPeNING ... v v e 30
Session, reSUMING. .. ovvvvveieveieieeennns 30
SesSioN, SaVINg ..o v v 29
Session, setting when invokingp 22
Setting variables. 119
Setting variables withSet " 53
Shared structures, detecting................ 121
Showing display details 109
SIGABRT signal...............ooooooit. 28,46
SIGALRM signal..............oooiiiint. 102
SIGINT signal.. ..., 88, 102
Signal settings, editing 102
Signal settings, saving 103
Signal,fatal ...l 102
Signal, sendingteopp ... 28
SIgnals. 102
SIGSEGVsignal...........covvviiiiiian... 102
SIGTRAPsignal. ...t 103
SIGUSRLsignal..............ccovient 49,171
Source code, editing ... 145
Source code, recompiling................... 146
Source code, reloading..................... 145

Sourcedirectory..........oooiiiii i 76

Concept Index

Sourcefile,opening ...l 74
Source file, typing into. 149
Sourcepath...............oiii 77
Source path, specifying...................... 77
Source Windowoovvviiii i 41
S0uUrce, acCessiNg.ovvvvieiiiiiiiaann. 76
Stackframe........... ... Qa8
Stack Frame...............coiiiiiiii 98
Stack, moving within....................... 100
Statusdisplay..............coeiiiii 112
Statusline ... 59
Status line, location. 67
Suppressingvalues. ... 116
T

Tabwidth. ... 79
TeXfile, printingas. ..., 132
TeXinffomanual.................oo 2
Theme,Data. 125
Theme, editing. ...t 127
Theme, for suppressing values............. 116
Threads. ... 101
TicTacToegame.........covvvievnenennn.n. 49
Tipoftheday. ... 60
Tip of the day, turning off} 62
Tip,onbuttons.............cooiii 59
Tip,value. ... 105
Title, display. 108
Tool Bar, location ...t 66
TOOItiP. oo 59
Tornado.coovi 175
TrY interface. ... i 150
TTY mode, setting when invokingop........... 23
TTY SEiNGS .. oo a3
U

Undo deleting displays 117
Undo disabling displays.................... 110
Undoingcommands.................c.oeennn. 60
Undoing frame changes.................... 100
Undoing lookups. ... 76
Undoing program executian. 100
Undoing signal handling..................... 103
Updating displayed values.................. 113
User-defined command..................... 154

221

\%

Value tip. 105
Value, display...........cooiiiiiiiiii, 108
Value, displaying....................... 105, 107
Value, dumping........covoviiiiiiinnns, 105
Value, plotting. 105
Value, plotting the history. 135
Value, printing.ooool 105, 106
Values, displaying withDisplay " 53
Values, plotting ...t 133
Values, plotting withPlot " 53
Values, printing withPrint " 53
Values, suppressing.coooveeieennenn.. 116
Variables, setting.oooil 119
Variables, setting withSet " 53
virtualmachine ool 26
VM 26
VS 4.
W

Watchpoint ..., 81, 87
Watchpoint properties 88
Watchpoint, deleting......................... 88
Watchpoint, editing.......................... 88
Watchpoint, setting.oh 88
Watchpoint, toggling......................... 53
Watchpoints, editing......................... 88
WDB ... 175
WDB, invokingoppp with.................. 16,175
WildeBeest 175
WindRiver GDB. ...t 175

Working directory, of the debugged program. 92

X

X programs, stopping.vvvvvvii i 89
Xserver, frozen.............cooiiiiiiiii. 89
Xserver,locked. ...l 89
X SESSION .\ttt 31
X Warnings, suppressing.................... 28
XDB .t e e ettt et e e e e 1.
XDB, invokingppp with....................... 16
XEmacs, integratingopcooovvnn... 150
XXGDB, integratingbopDo 151
Z

Zeller, Andreas. ... 3,4

222 Debugging with DDD

	Summary of DDD
	About this Manual
	Typographic conventions
	Free software
	Getting DDD
	Contributors to DDD
	History of DDD
	A Sample DDD Session
	Sample Program

	Getting In and Out of DDD
	Invoking DDD
	Choosing an Inferior Debugger
	DDD Options
	X Options
	Inferior Debugger Options
	GDB Options
	DBX and Ladebug Options
	XDB Options
	JDB Options
	PYDB Options
	Perl Options
	Bash Options

	Multiple DDD Instances
	X warnings

	Quitting DDD
	Persistent Sessions
	Saving Sessions
	Resuming Sessions
	Deleting Sessions
	Customizing Sessions

	Remote Debugging
	Running DDD on a Remote Host
	Using DDD with a Remote Inferior Debugger
	Customizing Remote Debugging

	Debugging a Remote Program

	Customizing Interaction with the Inferior Debugger
	Invoking an Inferior Debugger
	Initializing the Inferior Debugger
	GDB Initialization
	DBX Initialization
	XDB Initialization
	JDB Initialization
	PYDB Initialization
	Perl Initialization
	Bash Initialization
	Finding a Place to Start
	Opening the Selection

	Communication with the Inferior Debugger

	The DDD Windows
	The Menu Bar
	The File Menu
	The Edit Menu
	The View Menu
	The Program Menu
	The Commands Menu
	The Status Menu
	The Source Menu
	The Data Menu
	The Maintenance Menu
	The Help Menu
	Customizing the Menu Bar
	Auto-Raise Menus
	Customizing the Edit Menu

	The Tool Bar
	Customizing the Tool Bar

	The Command Tool
	Customizing the Command Tool
	Disabling the Command Tool

	Command Tool Position
	Customizing Tool Decoration

	Getting Help
	Undoing and Redoing Commands
	Customizing DDD
	How Customizing DDD Works
	Resources
	Changing Resources
	Saving Options

	Customizing DDD Help
	Button Tips
	Tip of the day
	Help Helpers

	Customizing Undo
	Customizing the DDD Windows
	Splash Screen
	Window Layout
	Customizing Fonts
	Toggling Windows
	Text Fields
	Icons
	Adding Buttons
	More Customizations

	Debugger Settings

	Navigating through the Code
	Compiling for Debugging
	Opening Files
	Opening Programs
	Opening Core Dumps
	Opening Source Files
	Filtering Files

	Looking up Items
	Looking up Definitions
	Textual Search
	Looking up Previous Locations
	Specifying Source Directories

	Customizing the Source Window
	Customizing Glyphs
	Customizing Searching
	Customizing Source Appearance
	Customizing Source Scrolling
	Customizing Source Lookup
	Customizing File Filtering

	Stopping the Program
	Breakpoints
	Setting Breakpoints
	Setting Breakpoints by Location
	Setting Breakpoints by Name
	Setting Regexp Breakpoints

	Deleting Breakpoints
	Disabling Breakpoints
	Temporary Breakpoints
	Editing Breakpoint Properties
	Breakpoint Conditions
	Breakpoint Ignore Counts
	Breakpoint Commands
	Moving and Copying Breakpoints
	Looking up Breakpoints
	Editing all Breakpoints
	Hardware-Assisted Breakpoints

	Watchpoints
	Setting Watchpoints
	Editing Watchpoint Properties
	Editing all Watchpoints
	Deleting Watchpoints

	Interrupting
	Stopping X Programs
	Customizing Grab Checking

	Running the Program
	Starting Program Execution
	Your Program's Arguments
	Your Program's Environment
	Your Program's Working Directory
	Your Program's Input and Output

	Using the Execution Window
	Customizing the Execution Window

	Attaching to a Running Process
	Customizing Attaching to Processes

	Program Stops
	Resuming Execution
	Continuing
	Stepping one Line
	Continuing to the Next Line
	Continuing Until Here
	Continuing Until a Greater Line is Reached
	Continuing Until Function Returns

	Continuing at a Different Address
	Examining the Stack
	Stack Frames
	Backtraces
	Selecting a Frame

	``Undoing'' Program Execution
	Examining Threads
	Handling Signals
	Killing the Program

	Examining Data
	Showing Simple Values using Value Tips
	Printing Simple Values in the Debugger Console
	Displaying Complex Values in the Data Window
	Display Basics
	Creating Single Displays
	Selecting Displays
	Showing and Hiding Details
	Rotating Displays
	Displaying Local Variables
	Displaying Program Status
	Refreshing the Data Window
	Display Placement
	Clustering Displays
	Creating Multiple Displays
	Editing all Displays
	Deleting Displays

	Arrays
	Array Slices
	Repeated Values
	Arrays as Tables

	Assignment to Variables
	Examining Structures
	Displaying Dependent Values
	Dereferencing Pointers
	Shared Structures
	Display Shortcuts

	Customizing Displays
	Using Data Themes
	Applying Data Themes to Several Values
	Editing Themes
	Writing Data Themes
	Display Resources
	VSL Resources

	Layouting the Graph
	Moving Displays
	Scrolling Data
	Aligning Displays
	Automatic Layout
	Rotating the Graph

	Printing the Graph

	Plotting Values
	Plotting Arrays
	Changing the Plot Appearance
	Plotting Scalars and Composites
	Plotting Display Histories
	Printing Plots
	Entering Plotting Commands
	Exporting Plot Data
	Animating Plots
	Customizing Plots
	Gnuplot Invocation
	Gnuplot Settings

	Examining Memory

	Machine-Level Debugging
	Examining Machine Code
	Machine Code Execution
	Examining Registers
	Customizing Machine Code

	Changing the Program
	Editing Source Code
	Customizing Editing
	In-Place Editing

	Recompiling
	Patching

	The Command-Line Interface
	Entering Commands
	Command Completion
	Command History
	Typing in the Source Window

	Entering Commands at the TTY
	Integrating DDD
	Using DDD with Emacs
	Using DDD with XEmacs
	Using DDD with XXGDB

	Defining Buttons
	Customizing Buttons

	Defining Commands
	Defining Simple Commands using GDB
	Defining Argument Commands using GDB
	Defining Commands using Other Debuggers

	Application Defaults
	Actions
	General Actions
	Data Display Actions
	Debugger Console Actions
	Source Window Actions

	Images
	Bugs and How To Report Them
	Where to Send Bug Reports
	Is it a DDD Bug?
	How to Report Bugs
	What to Include in a Bug Report
	Getting Diagnostics
	Logging
	Disabling Logging

	Debugging DDD
	Customizing Diagnostics

	Configuration Notes
	Using DDD with GDB
	Using DDD with WDB
	Using DDD with WindRiver GDB (Tornado)

	Using DDD with DBX
	Using DDD with Ladebug
	Using DDD with XDB
	Using DDD with JDB
	Using DDD with Perl
	Using DDD with Bash
	Using DDD with LessTif
	Dirty Tricks
	Extending DDD
	Frequently Answered Questions
	GNU General Public License
	Preamble
	TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND MODIFICATION
	How to Apply These Terms to Your New Programs
	Help and Assistance
	GNU Free Documentation License
	ADDENDUM: How to use this License for your documents
	Label Index
	Key Index
	Command Index
	Resource Index
	File Index
	Concept Index

