[ < ] | [ > ] | [ << ] | [ Up ] | [ >> ] | [Top] | [Contents] | [Index] | [ ? ] |
AutoOpts 27.4 is bundled with AutoGen. It is a tool that virtually eliminates the hassle of processing options and keeping man pages, info docs and usage text up to date. This package allows you to specify several program attributes, up to a hundred option types and many option attributes. From this, it then produces all the code necessary to parse and handle the command line and configuration file options, and the documentation that should go with your program as well. All the features notwithstanding, some applications simply have well-established command line interfaces. Even still, those programs may use the configuration file parsing portion of the library. See the "AutoOpts Features" and "Configuration File Format" sections.
[ < ] | [ > ] | [ << ] | [ Up ] | [ >> ] | [Top] | [Contents] | [Index] | [ ? ] |
AutoOpts supports option processing; option state saving; and program documentation with innumerable features. Here, we list a few obvious ones and some important ones, but the full list is really defined by all the attributes defined in the Option Definitions section.
[PROGRAM_NAME]
", See section configuration file presets.
dis-abled
with a disablement prefix.
Such options may default to either an enabled or a disabled state. You
may also provide an enablement prefix, too, e.g., --allow-mumble
and --prevent-mumble
.
--help
and --version
are automatically supported.
--more-help
will page the generated help.
main()
routines can take advantage of all of AutoOpts' functionality.
#include
-d into the client option definitions
and they specify an "anchor" option that has a callback and must be invoked.
That will give the library access to the option state for their options.
gnu-usage
attribute (see section Program Information Attributes).
This can be overridden by the user himself with the
AUTOOPTS_USAGE
environment variable. If it exists and is set
to the string gnu
, it will force GNU-ish style format; if it is
set to the string autoopts
, it will force AutoOpts standard
format; otherwise, it will have no effect.
ENABLE_NLS
defined and _()
defined to
a localization function such as gettext(3GNU)
, then the option
processing code will be localizable (see section Internationalizing AutoOpts).
allow-errors
(see section Program Description Attributes) attribute. When processing reaches a point
where optionProcess
(see section optionProcess) needs to be called
again, the current option can be set with RESTART_OPT(n)
(see section RESTART_OPT( n ) - Resume Option Processing) before calling optionProcess
.
See: See section Options for Library Code.
#include
into their own option definitions.
See "AutoOpt-ed Library for AutoOpt-ed Program" (see section AutoOpt-ed Library for AutoOpt-ed Program)
for more details.
[ < ] | [ > ] | [ << ] | [ Up ] | [ >> ] | [Top] | [Contents] | [Index] | [ ? ] |
When AutoGen is installed, the AutoOpts project is installed with it. AutoOpts includes various AutoGen templates and a pair of shared libraries. These libraries may be used under the terms of the GNU Lesser General Public License (LGPL).
One of these libraries (libopts
) is needed by programs that are built
using AutoOpts generated code. This library is available as a separate
"tear-off" source tarball. It is redistributable for use under either of
two licenses: The GNU Lesser General Public License ("Lesser" meaning you
have greater license with it and may link it into commercial programs), and
the advertising-clause-free BSD license. Both of these license terms are
incorporated into appropriate COPYING files included with the libopts
source tarball. This source may be incorporated into your package with
the following simple commands:
rm -rf libopts libopts-* gunzip -c `autoopts-config libsrc` | \ tar -xvf - mv libopts-*.*.* libopts |
View the `libopts/README' file for further integration information.
[ < ] | [ > ] | [ << ] | [ Up ] | [ >> ] | [Top] | [Contents] | [Index] | [ ? ] |
Since it is generally easier to start with a simple example than it is
to look at the options that AutoGen uses itself, here is a very simple
AutoOpts example. You can copy this example out of the Info file and
into a source file to try it. You can then embellish it into what you
really need. For more extensive examples, you can also examine the help
output and option definitions for the commands columns
,
getdefs
and autogen
itself.
For our simple example, assume you have a program named check
that takes two options:
check
does.
You want this option available as a POSIX-style flag option
and a GNU long option. You want to allow as many of these
as the user wishes.
First, specify your program attributes and its options to AutoOpts, as with the following example.
AutoGen Definitions options; prog-name = check; prog-title = "Checkout Automated Options"; long-opts; main = { main-type = shell-process; }; flag = { name = check-dirs; value = L; /* flag style option character */ arg-type = string; /* option argument indication */ max = NOLIMIT; /* occurrence limit (none) */ stack-arg; /* save opt args in a stack */ descrip = "Checkout directory list"; }; flag = { name = show_defs; descrip = "Show the definition tree"; disable = dont; /* mark as enable/disable type */ /* option. Disable as `dont-' */ }; |
Then perform the following steps:
cflags="-DTEST_CHECK_OPTS `autoopts-config cflags`"
ldflags="`autoopts-config ldflags`"
autogen checkopt.def
cc -o check -g ${cflags} checkopt.c ${ldflags}
./check --help
Running those commands yields:
check - Checkout Automated Options USAGE: check [ -<flag> [<val>] | --<name>[{=| }<val>] ]... Flg Arg Option-Name Description -L Str check-dirs Checkout directory list - may appear multiple times no show-defs Show the definition tree - disabled as --dont-show-defs -? no help Display usage information and exit -! no more-help Extended usage information passed thru pager Options are specified by doubled hyphens and their name or by a single hyphen and the flag character. |
Normally, however, you would compile `checkopt.c' as in:
cc -o checkopt.o -I$prefix/include -c checkopt.c |
and link `checkopt.o' with the rest of your program.
The main program causes the options to be processed
by calling optionProcess
(see section optionProcess):
main( int argc, char** argv ) { { int optct = optionProcess( &checkOptions, argc, argv ); argc -= optct; argv += optct; } |
The options are tested and used as in the following fragment.
"ENABLED_OPT
" is used instead of "HAVE_OPT
" for the
show-defs
option because it is an enabled/disabled option type:
if ( ENABLED_OPT( SHOW_DEFS ) && HAVE_OPT( CHECK_DIRS )) { int dirct = STACKCT_OPT( CHECK_DIRS ); char** dirs = STACKLST_OPT( CHECK_DIRS ); while (dirct-- > 0) { char* dir = *dirs++; ... |
A lot of magic happens to make this happen. The rest of this chapter will describe the myriad of option attributes supported by AutoOpts. However, keep in mind that, in general, you won't need much more than what was described in this "quick start" section.
[ < ] | [ > ] | [ << ] | [ Up ] | [ >> ] | [Top] | [Contents] | [Index] | [ ? ] |
AutoOpts was designed to configure a program for running. This generally
happens before much real work has been started. Consequently, it is
expected to be run before multi-threaded applications have started multiple
threads. However, this is not always the case. Some applications may
need to reset and reload their running configuration, and some may use
SET_OPT_xxx()
macros during processing. If you need to dynamically
change your option configuration in your multi-threaded application, it is
your responsibility to prevent all threads from accessing the option
configuration state, except the one altering the configuration.
The various accessor macros (HAVE_OPT()
, etc.) do not modify state
and are safe to use in a multi-threaded application. It is safe as long
as no other thread is concurrently modifying state, of course.
[ < ] | [ > ] | [ << ] | [ Up ] | [ >> ] | [Top] | [Contents] | [Index] | [ ? ] |
AutoOpts uses an AutoGen definitions file for the definitions of the program options and overall configuration attributes. The complete list of program and option attributes is quite extensive, so if you are reading to understand how to use AutoOpts, I recommend reading the "Quick Start" section (see section Quick Start) and paying attention to the following:
prog-name
, prog-title
, and argument
, program
attributes, See section Program Description Attributes.
name
and descrip
option attributes, See section Required Attributes.
value
(flag character) and min
(occurrence counts)
option attributes, See section Common Option Attributes.
arg-type
from the option argument specification section,
See section Option Argument Specification.
Keep in mind that the majority are rarely used and can be safely ignored. However, when you have special option processing requirements, the flexibility is there.
[ < ] | [ > ] | [ << ] | [ Up ] | [ >> ] | [Top] | [Contents] | [Index] | [ ? ] |
The following global definitions are used to define attributes of the entire program. These generally alter the configuration or global behavior of the AutoOpts option parser. The first two are required of every program. The rest have been alphabetized. Except as noted, there may be only one copy of each of these definitions:
This attribute is required. Variable names derived from this name
are derived using string->c_name!
(see section `string->c-name!' - map non-name chars to underscore).
This attribute is required and may be any descriptive text.
The presence of this attribute indicates ignoring any command line
option errors. This may also be turned on and off by invoking the
macros ERRSKIP_OPTERR
and ERRSTOP_OPTERR
from the
generated interface file.
Specifies the syntax of the arguments that follow the options.
It may not be empty, but if it is not supplied, then option processing
must consume all the arguments. If it is supplied and starts with an
open bracket ([
), then there is no requirement on the presence or
absence of command line arguments following the options. Lastly, if it
is supplied and does not start with an open bracket, then option
processing must not consume all of the command line arguments.
Indicates looking in the environment for values of variables named,
PROGRAM_OPTNAME
or PROGRAM
, where PROGRAM
is the
upper cased C-name
of the program and OPTNAME
is the
upper cased C-name
of a specific option.
This string is inserted into the .h interface file. Generally used for
global variables or #include
directives required by
flag_code
text and shared with other program text.
Do not specify your configuration header (`config.h') in this
attribute or the include
attribute, however. Instead, use
config-header
, below.
The contents of this attribute should be just the name of the configuration file. A "#include" naming this file will be inserted at the top of the generated header.
Specifies either a directory or a file using a specific path (like .
or `/usr/local/share/progname') or an environment variable (like
`$HOME/rc/' or `$PREFIX/share/progname') or the directory
where the executable was found (`$$[/...]') to use to try to find
the rcfile. Use as many as you like. The presence of this attribute
activates the --save-opts
and --load-opts
options.
See section configuration file presets.
This string is inserted into the .c file. Generally used for global
variables required only by flag_code
program text.
Presence indicates GNU-standard long option processing. If any options
do not have an option value (flag character) specified, and least one
does specify such a value, then you must specify long-opts
. If
none of your options specify an option value (flag character) and you do
not specify long-opts
, then command line arguments are processed
in "named option mode". This means that:
-
and --
are completely optional.
argument
program attribute is disallowed.
This value is inserted into all global names. This will disambiguate them if more than one set of options are to be compiled into a single program.
Specifies the configuration file name. This is only useful if you
have provided at least one homerc
attribute.
default: .<prog-name>rc
Specifies the program version and activates the VERSION option, See section Automatically Supported Options.
AutoOpts generates macros that presume that there are no cpp
macros
with the same name as the option name. For example, if you have an option
named, debug
, then you must not use #ifdef DEBUG
in your code.
If you specify this attribute, every option name will be guarded. If the name
is #define
-d, then a warning will be issued and the name undefined.
If you do not specify this and there is a conflict, you will get strange
error messages.
This will produce code that will warn you when conflicts get hidden. The builder of your program may suppress these warnings by adding this define to the compile command line:
-DNO_OPTION_NAME_WARNINGS |
[ < ] | [ > ] | [ << ] | [ Up ] | [ >> ] | [Top] | [Contents] | [Index] | [ ? ] |
Some libraries provide their own code for processing command line options, and this may be used by programs that utilize AutoOpts. You may also wish to write a library that gets configured with AutoOpts options and config files. Such a library may either supply its own configury routine and process its own options, or it may export its option descriptions to programs that also use AutoOpts. This section will describe how to do all of these different things.
7.5.2.1 AutoOpt-ed Library for AutoOpt-ed Program | ||
7.5.2.2 AutoOpt-ed Library for Regular Program | ||
7.5.2.3 AutoOpt-ed Program Calls Regular Library |
[ < ] | [ > ] | [ << ] | [ Up ] | [ >> ] | [Top] | [Contents] | [Index] | [ ? ] |
The library source code must provide an option definition file that consists
of only the flag
entries. The first flag
entry must contain the
following attributes:
This name is used in the construction of a global pointer of type
tOptDesc const*
. It is always required.
It tells AutoOpts
that this option serves no normal purpose.
It will be used to add usage clarity and to locate option descriptors
in the library code.
This is a string that is inserted in the extended usage display before the options specific to the current library. It is always required.
This should match the name of the library. This string is also used in the construction of the option descriptor pointer name. In the end, it looks like this:
extern tOptDesc const* <<lib-name>>_<<name>>_optDesc_p; |
and is used in the macros generated for the library's .h
file.
In order to compile this AutoOpts
using library, you must create a
special header that is not used by the client program. This is accomplished
by creating an option definition file that contains essentially exactly the
following:
AutoGen definitions options; prog-name = does-not-matter; // but is always required prog-title = 'also does not matter'; // also required config-header = 'config.h'; // optional, but common library; #include library-options-only.def |
and nothing else. AutoGen will produce only the .h
file.
You may now compile your library, referencing just this .h
file.
The macros it creates will utilize a global variable that will be defined
by the AutoOpts
-using client program. That program will need to
have the following #include
in its option definition file:
#include library-options-only.def |
All the right things will magically happen so that the global variables
named <<lib-name>>_<<name>>_optDesc_p
are initialized correctly.
For an example, please see the AutoOpts
test script:
`autoopts/test/library.test'.
[ < ] | [ > ] | [ << ] | [ Up ] | [ >> ] | [Top] | [Contents] | [Index] | [ ? ] |
In this case, your library must provide an option processing function
to a calling program. This is accomplished by setting the allow-errors
global option attribute. Each time your option handling function is called,
you must determine where your scan is to resume and tell the AutoOpts library
by invoking:
RESTART_OPT(next_arg_index); |
and then invoke not_opt_index = optionProcess(...)
.
The not_opt_index
value can be used to set optind
,
if that is the global being used to scan the program argument array.
In this method, do NOT utilize the global library
attribute.
Your library must specify its options as if it were a complete program.
You may choose to specify an alternate usage()
function so that
usage for other parts of the option interface may be displayed as well.
See "Program Information Attributes" (see section Program Information Attributes).
At the moment, there is no method for calling optionUsage()
telling
it to produce just the information about the options and not the program
as a whole. Some later revision after somebody asks.
[ < ] | [ > ] | [ << ] | [ Up ] | [ >> ] | [Top] | [Contents] | [Index] | [ ? ] |
As with providing an AutoOpt
-ed library to a non-AutoOpt
-ed
program, you must write the option description file as if you were writing
all the options for the program, but you should specify the
allow-errors
global option attribute and you will likely want an
alternate usage()
function (see "Program Information Attributes"
see section Program Information Attributes). In this case, though, when
optionProcess()
returns, you need to test to see if there might be
library options. If there might be, then call the library's exported
routine for handling command line options, set the next-option-to-process
with the RESTART_OPT()
macro, and recall optionProcess()
.
Repeat until done.
[ < ] | [ > ] | [ << ] | [ Up ] | [ >> ] | [Top] | [Contents] | [Index] | [ ? ] |
When AutoOpts generates the code to parse the command line options, it has
the ability to produce any of several types of main()
procedures.
This is done by specifying a global structured value for main
. The
values that it contains are dependent on the value set for the one value it
must have: main-type
.
The recognized values for main-type
are:
Here is an example of an include
variation:
main = { main-type = include; tpl = "main-template.tpl"; }; |
[ < ] | [ > ] | [ << ] | [ Up ] | [ >> ] | [Top] | [Contents] | [Index] | [ ? ] |
When the main-type
is specified to be guile
,
a main()
procedure is generated that calls gh_enter()
, providing
it with a generated inner_main()
to invoke. If you must perform
certain tasks before calling gh_enter()
, you may specify such code
in the value for the before-guile-boot
attribute.
The inner_main()
procedure itself will process the command line
arguments (by calling optionProcess()
,
see section optionProcess), and then either invoke the code
specified with the guile-main
attribute, or else export the
parsed options to Guile symbols and invoke the scm_shell()
function from the Guile library. This latter will render the program
nearly identical to the stock guile(1)
program.
[ < ] | [ > ] | [ << ] | [ Up ] | [ >> ] | [Top] | [Contents] | [Index] | [ ? ] |
This will produce a main()
procedure that parses the command line
options and emits to stdout
Bourne shell commands that puts the
option state into environment variables. This can be used within a
shell script as follows:
unset OPTION_CT eval "`opt_parser \"$@\"`" test -z "${OPTION_CT}" && exit 1 test ${OPTION_CT} -gt 0 && shift ${OPTION_CT} |
If the option parsing code detects an error or a request for usage,
it will not emit an assignment to OPTION_CT and the script should just
exit. If the options are set consistently, then something along the
lines of the following will be written to stdout
and evaled:
OPTION_CT=4 export OPTION_CT MYPROG_SECOND='first' export MYPROG_SECOND MYPROG_ANOTHER=1 # 0x1 export MYPROG_ANOTHER |
If the arguments are to be reordered, however, then the resulting set
of operands will be emitted and OPTION_CT
gets set to zero.
For example, the following would be appended to the above:
set -- 'operand1' 'operand2' 'operand3' OPTION_CT=0 |
OPTION_CT
is set to zero since it is not necessary to shift
off any options.
[ < ] | [ > ] | [ << ] | [ Up ] | [ >> ] | [Top] | [Contents] | [Index] | [ ? ] |
This will produce a main()
procedure that emits a shell script
that will parse the command line options. That script can be emitted
to stdout
or inserted or substituted into a pre-existing shell
script file. Improbable markers are used to identify previously inserted
parsing text:
# # # # # # # # # # -- do not modify this marker -- |
The program is also pretty insistent upon starting its parsing script on the second line.
[ < ] | [ > ] | [ << ] | [ Up ] | [ >> ] | [Top] | [Contents] | [Index] | [ ? ] |
You must supply a value for the main-text
attribute.
You may also supply a value for option-code
. If you do, then
the optionProcess
invocation will not be emitted into the code.
AutoOpts will wrap the main-text
inside of:
int main( int argc, char** argv ) { { int ct = optionProcess( &<<prog-name>>Options, argc, argv ); argc -= ct; argv += ct; } <<your text goes here>> } |
so you can most conveniently set the value with a "here string
"
(see section A Here String):
code = <<- _EndOfMainProc_ <<your text goes here>> _EndOfMainProc_; |
[ < ] | [ > ] | [ << ] | [ Up ] | [ >> ] | [Top] | [Contents] | [Index] | [ ? ] |
You must write a template to produce your main procedure.
You specify the name of the template with the tpl
attribute
and it will be incorporated at the point where AutoOpts is ready
to emit the main()
procedure.
This can be very useful if, in your working environment, you have
many programs with highly similar main()
procedures. All you need
to do is parameterize the variations and specify which variant is needed
within the main
AutoOpts specification. Since you are coding
the template for this, the attributes needed for this variation would
be dictated by your template.
[ < ] | [ > ] | [ << ] | [ Up ] | [ >> ] | [Top] | [Contents] | [Index] | [ ? ] |
You must write a template to produce your main procedure. That template
must contain a definition for the function specified with the func
attribute to this main()
procedure specification. Typically, this
template will be incorporated by using the --lib-template
option
(see section lib-template option (-l)) in the AutoGen invocation. Otherwise, this
variation operates in much the same way as "include
"
(see section include: code emitted from included template) method.
[ < ] | [ > ] | [ << ] | [ Up ] | [ >> ] | [Top] | [Contents] | [Index] | [ ? ] |
This produces a main procedure that invokes a procedure once for each operand
on the command line (non-option arguments), OR once for each
non-blank, non-comment stdin
input line. Leading and trailing white
space is trimmed from the input line and comment lines are lines that are
empty or begin with a comment character, defaulting to a hash ('#') character.
NB:
The argument
program attribute (see section Program Description Attributes)
must begin with the [
character, to indicate that there are
command operands, but that they are optional.
There are a number of attributes to main
that may be used:
handler-proc
This attribute is required. It is used to name the procedure to call. That procedure is presumed to be external, but if you provide the code for it, then the procedure is emitted as a static procedure in the generated code.
This procedure should return 0 on success, a cumulative error code on warning and exit without returning on an unrecoverable error. As the cumulative warning codes are or-ed together, the codes should be some sort of bit mask in order to be ultimately decipherable (if you need to do that).
If the called procedure needs to cause a fail-exit, it is expected to call
exit(3)
directly. If you want to cause a warning exit code, then this
handler function should return a non-zero status. That value will be
OR-ed into a result integer for computing the final exit code. E.g.,
here is part of the emitted code:
int res = 0; if (argc > 0) { do { res |= my_handler( *(argv++) ); } while (--argc > 0); } else { ... |
handler-type
If you do not supply this attribute, your handler procedure must be the default type. The profile of the procedure must be:
int my_handler( char const *pz_entry ); |
However, if you do supply this attribute, you may select any of three alternate flavors:
This is essentially the same as the default handler type, except that before your procedure is invoked, the generated code has verified that the string names an existing file. The profile is unchanged.
Before calling your procedure, the file is f-opened according to the "X",
where "X" may be any of the legal modes for fopen(3C)
. In this case,
the profile for your procedure must be:
int my_handler( char const* pz_fname, FILE* entry_fp ); |
Before calling your procedure, the contents of the file are read into memory. (Excessively large files may cause problems.) The "`some-text-of-file'" disallows empty files. Both require regular files. In this case, the profile for your procedure must be:
int my_handler( char const* pz_fname, char* file_text, size_t text_size ); |
Note that though the file_text
is not const
, any changes made to
it are not written back to the original file. It is merely a memory image of
the file contents. Also, the memory allocated to hold the text is
text_size + 1
bytes long and the final byte is always NUL
.
The file contents need not be text, as the data are read with the read(2)
system call.
my_handler-code
With this attribute, you provide the code for your handler procedure
in the option definition file. In this case, your main()
procedure specification might look something like this:
main = { main-type = for-each; handler-proc = my_handler; my_handler-code = <<- EndOfMyCode /* whatever you want to do */ EndOfMyCode; }; |
and instead of an emitted external reference, a procedure will be emitted that looks like this:
static int my_handler( char const* pz_entry ) { int res = 0; <<my_handler-code goes here>> return res; } |
main-init
This is code that gets inserted after the options have been processed, but before the handler procs get invoked.
main-fini
This is code that gets inserted after all the entries have been processed,
just before returning from main()
.
comment-char
If you wish comment lines to start with a character other than a hash
(#
) character, then specify one character with this attribute.
If that character is the NUL
byte, then only blank lines will be
considered comments.
[ < ] | [ > ] | [ << ] | [ Up ] | [ >> ] | [Top] | [Contents] | [Index] | [ ? ] |
These attributes are used to define how and what information is displayed to the user of the program.
The copyright
is a structured value containing three to five
values. If copyright
is used, then the first three are required.
An example of this might be:
copyright = { date = "1992-2004"; owner = "Bruce Korb"; eaddr = 'bkorb@gnu.org'; type = GPL; }; |
This string is added to the usage output when the HELP option is selected.
Gives additional information whenever the usage routine is invoked..
The name of the package the program belongs to. This will appear
parenthetically after the program name in the version and usage output,
e.g.: autogen (GNU autogen) - The Automated Program Generator
.
This attribute will not change anything except appearance. Normally, the option names are all documented in lower case. However, if you specify this attribute, then they will display in the case used in their specification. Command line options will still be matched without case sensitivity.
These define global pointer variables that point to the program
descriptor and the first option descriptor for a library option. This
is intended for use by certain libraries that need command line and/or
initialization file option processing. These definitions have no effect
on the option template output, but are used for creating a library
interface file. Normally, the first "option" for a library will be a
documentation option that cannot be specified on the command line, but
is marked as settable
. The library client program will invoke the
SET_OPTION
macro which will invoke a handler function that will
finally set these global variables.
Optionally names the usage procedure, if the library routine
optionUsage()
does not work for you. If you specify
my_usage
as the value of this attribute, for example, you will
use a procedure by that name for displaying usage. Of course, you will
need to provide that procedure and it must conform to this profile:
void my_usage( tOptions* pOptions, int exitCode ) |
Normally, the default format produced by the optionUsage
procedure
is AutoOpts Standard. By specifying this attribute, the default format
will be GNU-ish style. Either default may be overridden by the user with
the AUTOOPTS_USAGE
environment variable. If it is set to gnu
or autoopts
, it will alter the style appropriately. This attribute
will conflict with the usage
attribute.
Some applications traditionally require that the command operands be
intermixed with the command options. In order to handle that, the arguments
must be reordered. If you are writing such an application, specify this
global option. All of the options (and any associated option arguments)
will be brought to the beginning of the argument list. New applications
should not use this feature, if at all possible. This feature is
disabled if POSIXLY_CORRECT
is defined in the environment.
[ < ] | [ > ] | [ << ] | [ Up ] | [ >> ] | [Top] | [Contents] | [Index] | [ ? ] |
For each option you wish to specify, you must have a block macro named
flag
defined. There are two required attributes: name
and
descrip
. If any options do not have a value
(traditional flag
character) attribute, then the long-opts
program attribute must also
be defined. As a special exception, if no options have a value
and long-opts
is not defined and argument
is
not defined, then all arguments to the program are named options. In this
case, the -
and --
command line option markers are optional.
[ < ] | [ > ] | [ << ] | [ Up ] | [ >> ] | [Top] | [Contents] | [Index] | [ ? ] |
Every option must have exactly one copy of both of these attributes.
Long name for the option. Even if you are not accepting long options
and are only accepting flags, it must be provided. AutoOpts generates
private, named storage that requires this name. This name also causes
a #define
-d name to be emitted. It must not conflict with any
other names you may be using in your program.
For example, if your option name is, debug
or munged-up
,
you must not use the #define
names DEBUG
(or
MUNGED_UP
) in your program for non-AutoOpts related purposes.
They are now used by AutoOpts.
Sometimes (most especially under Windows), you may get a surprise.
For example, INTERFACE
is apparently a user space name that
one should be free to use. Windows usurps this name. To solve this,
you must do one of the following:
export = '#undef INTERFACE'; |
guard-option-names; |
Except for documentation options, a very brief description of
the option. About 40 characters on one line, maximum. It appears on
the usage()
output next to the option name. If, however, the
option is a documentation option, it will appear on one or more lines by
itself. It is thus used to visually separate and comment upon groups of
options in the usage text.
[ < ] | [ > ] | [ << ] | [ Up ] | [ >> ] | [Top] | [Contents] | [Index] | [ ? ] |
These option attributes are optional. Any that do appear in the definition of a flag, may appear only once.
The flag character to specify for traditional option flags, e.g., -L
.
Maximum occurrence count (invalid if disable present).
The default maximum is 1. NOLIMIT
can be used for the value,
otherwise it must be a number or a #define
that evaluates to a number.
Minimum occurrence count. If present, then the option must appear on the command line. Do not define it with the value zero (0).
If an option must be specified, but it need not be specified on the command line, then specify this attribute for the option.
Long-name prefix for enabling the option (invalid if disable not present). Only useful if long option names are being processed.
Prefix for disabling (inverting sense of) the option. Only useful if long option names are being processed.
If default is for option being enabled. (Otherwise, the OPTST_DISABLED bit is set at compile time.) Only useful if the option can be disabled.
If an option is relevant on certain platforms or when certain features
are enabled or disabled, you can specify the compile time flag used
to indicate when the option should be compiled in or out. For example,
if you have a configurable feature, mumble
that is indicated
with the compile time define, WITH_MUMBLING
, then add:
ifdef = WITH_MUMBLING; |
Take care when using these. There are several caveats:
VALUE_OPT_
values are #define
-d. If WITH_MUMBLING
is not defined, then the associated VALUE_OPT_
value will not be
#define
-d either. So, if you have an option named, MUMBLING
that is active only if WITH_MUMBLING
is #define
-d, then
VALUE_OPT_MUMBLING
will be #define
-d iff WITH_MUMBLING
is #define
-d. Watch those switch statements.
[ < ] | [ > ] | [ << ] | [ Up ] | [ >> ] | [Top] | [Contents] | [Index] | [ ? ] |
These option attributes do not fit well with other categories.
If presetting this option is not allowed. (Thus, environment variables and values set in configuration files will be ignored.)
If the option can be set outside of option processing. If this
attribute is defined, special macros for setting this particular option
will be inserted into the interface file. For example,
TEMPL_DIRS
is a settable option for AutoGen, so a macro named
SET_OPT_TEMPL_DIRS(a)
appears in the interface file. This
attribute interacts with the documentation attribute.
Generally, when several options are mutually exclusive and basically serve the purpose of selecting one of several processing modes, these options can be considered an equivalence class. Sometimes, it is just easier to deal with them as such. All members of the equivalence class must contain the same equivalenced-to option, including the equivalenced-to option itself. Thus, it must be a class member.
For an option equivalence class, there is a single occurrence counter for
the class. It can be referenced with the interface macro,
COUNT_OPT(BASE_OPTION)
, where "BASE_OPTION" is the equivalenced-to
option name.
Also, please take careful note: since the options are mapped to the equivalenced-to option descriptor, any option argument values are mapped to that descriptor also. Be sure you know which "equivalent option" was selected before getting an option argument value!
During the presetting phase of option processing (see section Configuring your program), equivalenced options may be specified. However, if different equivalenced members are specified, only the last instance will be recognized and the others will be discarded. A conflict error is indicated only when multiple different members appear on the command line itself.
As an example of where equivalenced options might be useful, cpio(1)
has three options -o
, -i
, and -p
that define the
operational mode of the program (create
, extract
and
pass-through
, respectively). They form an equivalence class from
which one and only one member must appear on the command line. If
cpio
were an AutoOpt-ed program, then each of these option
definitions would contain:
equivalence = create; |
and the program would be able to determine the operating mode with code that worked something like this:
switch (WHICH_IDX_CREATE) { case INDEX_OPT_CREATE: ... case INDEX_OPT_EXTRACT: ... case INDEX_OPT_PASS_THROUGH: ... default: /* cannot happen */ } |
This attribute means the option exists for the purpose of separating option description text in the usage output. Libraries may choose to make it settable so that the library can determine which command line option is the first one that pertains to the library.
If present, this option disables all other attributes except settable
,
call-proc
and flag_-ode
. settable
must be and is only
specified if call-proc
, extract-code
or flag-code
has
been specified. When present, the descrip
attribute will be displayed
only when the --help
option has been specified. It will be displayed
flush to the left hand margin and may consist of one or more lines of text.
The name of the option will not be printed.
Documentation options are for clarifying the usage text and will not appear in generated man pages or in the generated invoking texinfo doc.
[ < ] | [ > ] | [ << ] | [ Up ] | [ >> ] | [Top] | [Contents] | [Index] | [ ? ] |
Certain options may need to be processed early. For example, in order to
suppress the processing of configuration files, it is necessary to process the
command line option --no-load-opts
before the config files are
processed. To accommodate this, certain options may have their enabled or
disabled forms marked for immediate processing. The consequence of this is
that they are processed ahead of all other options in the reverse of normal
order.
Normally, the first options processed are the options specified in the first
homerc
file, followed by then next homerc
file through to the
end of config file processing. Next, environment variables are processed and
finally, the command line options. The later options override settings
processed earlier. That actually gives them higher priority. Command line
immediate action options actually have the lowest priority of all. They would
be used only if they are to have an effect on the processing of subsequent
options.
Use this option attribute to specify that the enabled form of the option
is to be processed immediately. The help
and more-help
options are so specified. They will also call exit()
upon
completion, so they do have an effect on the processing
of the remaining options :-).
Use this option attribute to specify that the disabled form of the
option is to be processed immediately. The load-opts
option is
so specified. The --no-load-opts
command line option will
suppress the processing of config files and environment variables.
Contrariwise, the --load-opts
command line option is
processed normally. That means that the options specified in that file
will be processed after all the homerc
files and, in fact, after
options that precede it on the command line.
If either the immediate
or the immed-disable
attributes
are set to the string, "also
", then the option will actually be
processed twice: first at the immediate processing phase and again
at the "normal" time.
[ < ] | [ > ] | [ << ] | [ Up ] | [ >> ] | [Top] | [Contents] | [Index] | [ ? ] |
These attributes may be used as many times as you need. They are used at the end of the option processing to verify that the context within which each option is found does not conflict with the presence or absence of other options.
This is not a complete cover of all possible conflicts and requirements, but it simple to implement and covers the more common situations.
one entry for every option that must be present when this option is present
one entry for every option that cannot be present when this option is present
[ < ] | [ > ] | [ << ] | [ Up ] | [ >> ] | [Top] | [Contents] | [Index] | [ ? ] |
Command line options come in three flavors: options that do not take arguments, those that do and those that may. Without an "arg-type" attribute, AutoOpts will not process an argument to an option. If "arg-type" is specified and "arg-optional" is also specified, then the next command line token will be taken to be an argument, unless it looks like the name of another option.
If the argument type is specified to be anything other than "str[ing]", then
AutoOpts will specify a callback procedure to handle the argument. Some of
these procedures will be created and inserted into the generated .c
file, and others are already built into the `libopts' library.
Therefore, if you write your own callback procedure
(see section Option Argument Handling), then you must either not specify an
"arg-type" attribute, or else specify it to be of type "str[ing]". Your
callback function will be able to place its own restrictions on what that
string may contain or represent.
This specifies the type of argument the option will take. If not present, the option cannot take an argument. If present, it must be one of the following five. The bracketed part of each name is optional.
The argument may be any arbitrary string, though your program or option callback procedure may place additional constraints upon it.
The argument must be a correctly formed integer, without any trailing U's or
L's. AutoOpts contains a library procedure to convert the string to a
number. If you specify range checking with arg-range
, then AutoOpts
produces a special purpose procedure for this option.
The argument will be interpreted and always yield either AG_TRUE or
AG_FALSE. False values are the empty string, the number zero, or a
string that starts with f
, F
, n
or N
(representing False or No). Anything else will be interpreted as True.
The argument must match a specified list of strings.
Assuming you have named the option, optn-name
,
the strings will be converted into an enumeration of type te_Optn_Name
with the values OPTN_NAME_KEYWORD
. If you have not
specified a default value, the value OPTN_NAME_UNDEFINED
will be
inserted with the value zero. The option will be initialized to that
value. You may now use this in your code as follows:
te_Optn_Name opt = OPT_VALUE_OPTN_NAME; switch (opt) { case OPTN_NAME_UNDEFINED: /* undefined things */ break; case OPTN_NAME_KEYWORD: /* `keyword' things */ break; default: /* utterly impossible */ ; } |
AutoOpts produces a special purpose procedure for this option.
If you have need for the string name of the selected keyword, you
may obtain this with the macro, OPT_OPTN_NAME_VAL2STR(val)
.
The value you pass would normally be OPT_VALUE_OPTN_NAME
,
but anything with numeric value that is legal for te_Optn_Name
may be passed. Anything out of range will result in the string,
"*INVALID*"
being returned. The strings are read only.
It may be used as in:
te_Optn_Name opt = OPT_VALUE_OPTN_NAME; printf( "you selected the %s keyword\n", OPT_OPTN_NAME_VAL2STR(opt) ); |
The argument must be a list of names each of which must match the
strings "all
", "none
" or one of the keywords specified
for this option. all
will turn on all membership bits and
none
will turn them all off. Specifying one of the keywords
will turn on the corresponding set membership bit. Literal numbers
may also be used and may, thereby, set or clear more than one bit.
Preceding a keyword or literal number with a bang (!
-
exclamation point) will turn the bit(s) off. The number of keywords
allowed is constrained by the number of bits in a pointer, as the bit
set is kept in a void*
.
If, for example, you specified first
in your list of keywords,
then you can use the following code to test to see if either first
or all
was specified:
uintptr_t opt = OPT_VALUE_OPTN_NAME; if (opt & OPTN_NAME_FIRST) /* OPTN_NAME_FIRST bit was set */ ; |
AutoOpts produces a special purpose procedure for this option.
If the arg-type
is keyword
or set-membership
,
then you must specify the list of keywords by a series of
keyword
entries. The interface file will contain values for
<OPTN_NAME>_<KEYWORD>
for each keyword entry.
keyword
option types will have an enumeration and
set-membership
option types will have a set of unsigned long bits
#define
-d. If there are more than 32 bits defined, the #define
will set unsigned long long values and you best be running on a
64 bit platform.
This attribute indicates that the user does not have to supply an
argument for the option. This is only valid if the arg-type is
string
or keyword
. If it is keyword
, then
this attribute may also specify the default keyword to assume when
the argument is not supplied. If left empty, arg-default or
the zero-valued keyword will be used.
This specifies the default value to be used when the option is not specified or preset.
If your program processes its arguments in named option mode (See
"long-opts" in Program Description Attributes), then you may select
one of your options to be the default option. Do so with this
attribute. The option so specified must have an arg-type
specified, but not the arg-optional
attribute. That is to say,
the option argument must be required.
If you have done this, then any arguments that do not match an option
name and do not contain an equal sign (=
) will be interpreted as
an option argument to the default option.
If the arg-type
is number
, then arg-range
s may be
specified, too. If you specify one or more of these option attributes,
then AutoOpts will create a callback procedure for handling it. The
argument value supplied for the option must match one of the range
entries. Each arg-range should consist of either an integer by itself
or an integer range. The integer range is specified by one or two
integers separated by the two character sequence, ->
.
Be sure to quote the entire range string. The definitions parser will
not accept the range syntax as a single string token.
The generated procedure imposes the range constraints as follows:
INT_MIN
, both for obvious
reasons and because that value is used to indicate a single-valued match.
[ < ] | [ > ] | [ << ] | [ Up ] | [ >> ] | [Top] | [Contents] | [Index] | [ ? ] |
AutoOpts will either specify or automatically generate callback procedures
for options that take specialized arguments. The only option argument types
that are not specialized are plain string arguments and no argument at all.
For options that fall into one of those two categories, you may specify your
own callback function, as specified below. If the option takes a string
argument, then you may specify that the option is to be handled by the
libopts
library procedures stackOptArg()
or
unstackOptArg()
(see below). Finally, documentation
options
(Special Option Handling) may also be marked as settable and have
special callback functions (either flag-code
, extract-code
, or
call-proc
).
statements to execute when the option is encountered. The generated procedure will look like this:
static void doOpt<name>( tOptions* pOptions, tOptDesc* pOptDesc ) { <flag_code> } |
Only certain fields within the tOptions
and tOptDesc
structures may be accessed. See section Data for Option Processing.
This is effectively identical to flag_code
, except that the
source is kept in the output file instead of the definitions file.
A long comment is used to demarcate the code. You must not modify
that marker. Before regenerating the option code file,
the old file is renamed from MUMBLE.c to MUMBLE.c.save. The template
will be looking there for the text to copy into the new output file.
external procedure to call when option is encountered. The calling
sequence must conform to the sequence defined above for the generated
procedure, doOpt<name>
. It has the same restrictions
regarding the fields within the structures passed in as arguments.
See section Data for Option Processing.
Name of another option whose flag_code
can be executed
when this option is encountered.
Call a special library routine to stack the option's arguments. Special
macros in the interface file are provided for determining how many of
the options were found (STACKCT_OPT(NAME)
) and to obtain a
pointer to a list of pointers to the argument values
(STACKLST_OPT(NAME)
). Obviously, for a stackable argument,
the max
attribute needs to be set higher than 1
.
If this stacked argument option has a disablement prefix, then the entire stack of arguments will be cleared by specifying the option with that disablement prefix.
Call a special library routine to remove ("unstack") strings
from a stack-arg
option stack. This attribute must name
the option that is to be "unstacked". Neither this option nor
the stacked argument option it references may be equivalenced to
another option.
[ < ] | [ > ] | [ << ] | [ Up ] | [ >> ] | [Top] | [Contents] | [Index] | [ ? ] |
AutoOpts includes AutoGen templates for producing abbreviated man pages and for producing the invoking section of an info document. To take advantage of these templates, you must add several attributes to your option definitions.
First, every flag
definition other than "documentation"
definitions, must have a doc
attribute defined. If the option takes
an argument, then it will need an arg-name
attribute as well. The
doc
text should be in plain sentences with minimal formatting. The
Texinfo commands @code
, and @var
will have its enclosed text
made into \fB entries in the man page, and the @file
text
will be made into \fI entries. The arg-name
attribute is
used to display the option's argument in the man page.
Options marked with the "documentation" attribute are for documenting the usage text. All other options should have the "doc" attribute in order to document the usage of the option in the generated man pages.
If an option has an argument, the argument should have a name for
documentation purposes. It will default to arg-type
, but
it will likely be clearer with something else like, file-name
instead of string
(the type).
Then, you need to supply a brief description of what your program does.
If you already have a detail
definition, this may be sufficient.
If not, or if you need special formatting for one of the manual formats,
then you will need either a definition for prog-man-descrip
or
prog-info-descrip
or both. These will be inserted verbatim
in the man page document and the info document, respectively.
Finally, if you need to add man page sections like SEE ALSO
or
USAGE
or other, put that text in a man-doc
definition. This
text will be inserted verbatim in the man page after the OPTIONS
section and before the AUTHOR
section.
[ < ] | [ > ] | [ << ] | [ Up ] | [ >> ] | [Top] | [Contents] | [Index] | [ ? ] |
AutoOpts provides automated support for five options. help
and
more-help
are always provided. version
is provided if
version
is defined in the option definitions See section Program Description Attributes.
save-opts
and load-opts
are provided if at least
one homerc
is defined See section Program Description Attributes.
Below are the option names and flag values. The flags are activated if and
only if at least one user-defined option also uses a flag value. These
flags may be deleted or changed to characters of your choosing by specifying
xxx-value = "y";
, where xxx
is one of the five names below and
y
is either empty or the character of your choice. For example, to
change the help flag from ?
to h
, specify help-value = "h";
;
and to require that save-opts
be specified only with its long
option name, specify save-opts-value = "";
.
This option will immediately invoke the USAGE()
procedure
and display the usage line, a description of each option with
its description and option usage information. This is followed
by the contents of the definition of the detail
text macro.
This option is identical to the help
option, except that the
output is passed through a pager program. (more
by default, or
the program identified by the PAGER
environment variable.)
This will print the program name, title and version. If it is followed by
the letter c
and a value for copyright
and owner
have
been provided, then the copyright will be printed, too. If it is followed
by the letter n
, then the full copyright notice (if available) will
be printed.
This option will cause the option state to be printed in the configuration file format when option processing is done but not yet verified for consistency. The program will terminate successfully without running when this has completed. Note that for most shells you will have to quote or escape the flag character to restrict special meanings to the shell.
The output file will be the configuration file name (default or provided by
rcfile
) in the last directory named in a homerc
definition.
This option may be set from within your program by invoking the
"SET_OPT_SAVE_OPTS(filename)
" macro (see section SET_OPT_name - Force an option to be set).
Invoking this macro will set the file name for saving the option processing
state, but the state will not actually be saved. You must call
optionSaveFile
to do that (see section optionSaveFile).
CAVEAT: if, after invoking this macro, you call
optionProcess
, the option processing state will be saved to this file
and optionProcess
will not return. You may wish to invoke
CLEAR_OPT( SAVE_OPTS )
(see section CLEAR_OPT( <NAME> ) - Clear Option Markings) beforehand.
This option will load options from the named file. They will be treated exactly as if they were loaded from the normally found configuration files, but will not be loaded until the option is actually processed. This can also be used within another configuration file, causing them to nest.
It is ultimately intended that specifying the option,
no-load-opts
will suppress the processing of configuration files and
environment variables. To do this, AutoOpts must first implement
pre-scanning of the options, environment and config files.
[ < ] | [ > ] | [ << ] | [ Up ] | [ >> ] | [Top] | [Contents] | [Index] | [ ? ] |
AutoOpts has developed a set of standardized options.
You may incorporate these options in your program simply by first
adding a #define
for the options you want, and then the line,
#include stdoptions.def |
in your option definitions. The supported options are specified thus:
#define DEBUG #define DIRECTORY #define DRY_RUN #define INPUT #define INTERACTIVE #define OUTPUT #define WARN #define SILENT #define QUIET #define BRIEF #define VERBOSE |
By default, only the long form of the option will be available.
To specify the short (flag) form, suffix these names with _FLAG
.
e.g.,
#define DEBUG_FLAG |
--silent
, --quiet
, --brief
and --verbose
are
related in that they all indicate some level of diagnostic output.
These options are all designed to conflict with each other.
Instead of four different options, however, several levels can be
incorporated by #define
-ing VERBOSE_ENUM
. In conjunction
with VERBOSE
, it incorporates the notion of 5 levels in an
enumeration: silent
, quiet
, brief
,
informative
and verbose
; with the default being
brief
.
Here is an example program that uses the following set of definitions:
AutoGen Definitions options; prog-name = default-test; prog-title = 'Default Option Example'; homerc = '$$/../share/default-test', '$HOME', '.'; environrc; long-opts; gnu-usage; version = '1.0'; main = { main-type = shell-process; }; #define DEBUG_FLAG #define WARN_FLAG #define WARN_LEVEL #define VERBOSE_FLAG #define VERBOSE_ENUM #define DRY_RUN_FLAG #define OUTPUT_FLAG #define INPUT_FLAG #define DIRECTORY_FLAG #define INTERACTIVE_FLAG #include stdoptions.def |
Running a few simple commands on that definition file:
autogen default-test.def copts="-DTEST_DEFAULT_TEST_OPTS `autoopts-config cflags`" lopts="`autoopts-config ldflags`" cc -o default-test ${copts} default-test.c ${lopts} |
Yields a program which, when run with `--help', prints out:
default-test - Default Option Example - Ver. 1.0 USAGE: default-test [ -<flag> [<val>] | --<name>[{=| }<val>] ]... The following options are commonly used and are provided and supported by AutoOpts: -D, --debug run program with debugging info -V, --verbose=KWd run program with progress info -w, --warn=num specify a warning-level threshhold - disabled as --no-warn -d, --dry-run program will make no changes -I, --interactive=str prompt for confirmation -i, --input=str redirect input from file -o, --output=str redirect output to file -d, --directory=str use specified dir for I/O version and help options: -v, --version[=arg] Output version information and exit -?, --help Display usage information and exit -!, --more-help Extended usage information passed thru pager ->, --save-opts[=arg] Save the option state to a config file -<, --load-opts=str Load options from a config file - disabled as --no-load-opts - may appear multiple times Options are specified by doubled hyphens and their name or by a single hyphen and the flag character. The following option preset mechanisms are supported: - reading file $$/../share/default-test - reading file $HOME - reading file /home/bkorb/ag/ag/doc/.default_testrc - examining environment variables named DEFAULT_TEST_* The valid "verbose" option keywords are: silent quiet brief informative verbose |
[ < ] | [ > ] | [ << ] | [ Up ] | [ >> ] | [Top] | [Contents] | [Index] | [ ? ] |
The user interface for access to the argument information is completely defined in the generated header file and in the portions of the distributed file "options.h" that are marked "public".
In the following macros, text marked <NAME>
or name
is the name of the option in upper case and segmented
with underscores _
. The macros and enumerations defined in the
options header (interface) file are used as follows:
To see how these #define
macros are used in a program,
the reader is referred to the several `opts.h' files
included with the AutoGen sources.
[ < ] | [ > ] | [ << ] | [ Up ] | [ >> ] | [Top] | [Contents] | [Index] | [ ? ] |
This section describes the data that may be accessed from within the
option processing callback routines. The following fields may be used
in the following ways and may be used for read only. The first set is
addressed from the tOptDesc*
pointer:
These may be used by option procedures to determine which option they are working on (in case they handle several options).
These may be used by option procedures to determine which option was used to set the current option. This may be different from the above if the options are members of an equivalence class.
If AutoOpts is processing command line arguments, then this value will contain the current occurrence count. During the option preset phase (reading configuration files and examining environment variables), the value is zero.
The field may be tested for the following bit values
(prefix each name with OPTST_
, e.g. OPTST_INIT
):
Initial compiled value. As a bit test, it will always yield FALSE.
The option was set via the SET_OPT()
macro.
The option was set via a configuration file.
The option was set via a command line option.
This is a mask of flags that show the set state, one of the above four values.
This bit is set when the option was selected by an equivalenced option.
This bit is set if the option is to be disabled.
(Meaning it was a long option prefixed by the disablement prefix, or
the option has not been specified yet and initializes as disabled
.)
As an example of how this might be used, in AutoGen I want to allow
template writers to specify that the template output can be left
in a writable or read-only state. To support this, there is a Guile
function named set-writable
(see section `set-writable' - Make the output file be writable).
Also, I provide for command options --writable
and
--not-writable
. I give precedence to command line and RC
file options, thus:
switch (STATE_OPT( WRITABLE )) { case OPTST_DEFINED: case OPTST_PRESET: fprintf( stderr, zOverrideWarn, pCurTemplate->pzFileName, pCurMacro->lineNo ); break; default: if (gh_boolean_p( set ) && (set == SCM_BOOL_F)) CLEAR_OPT( WRITABLE ); else SET_OPT_WRITABLE; } |
Pointer to the latest argument string. BEWARE If the argument type is numeric, an enumeration or a bit mask, then this will be the argument value and not a pointer to a string.
The following two fields are addressed from the tOptions*
pointer:
Points to a NUL-terminated string containing the current program name, as retrieved from the argument vector.
Points to a NUL-terminated string containing the full path of the current program, as retrieved from the argument vector. (If available on your system.)
Note these fields get filled in during the first call to
optionProcess()
. All other fields are private, for the exclusive
use of AutoOpts code and are subject to change.
[ < ] | [ > ] | [ << ] | [ Up ] | [ >> ] | [Top] | [Contents] | [Index] | [ ? ] |
Make as if the option had never been specified.
HAVE_OPT(<NAME>)
will yield FALSE
after invoking this macro.
[ < ] | [ > ] | [ << ] | [ Up ] | [ >> ] | [Top] | [Contents] | [Index] | [ ? ] |
This macro will tell you how many times the option was specified on the command line. It does not include counts of preset options.
if (COUNT_OPT( NAME ) != desired-count) { make-an-undesirable-message. } |
[ < ] | [ > ] | [ << ] | [ Up ] | [ >> ] | [Top] | [Contents] | [Index] | [ ? ] |
This macro is used internally by other AutoOpt macros. It is not for general use. It is used to obtain the option description corresponding to its UPPER CASED option name argument. This is primarily used in other macro definitions.
[ < ] | [ > ] | [ << ] | [ Up ] | [ >> ] | [Top] | [Contents] | [Index] | [ ? ] |
This macro is emitted if it is both settable and it can be disabled. If it cannot be disabled, it may always be CLEAR-ed (see above).
The form of the macro will actually depend on whether the
option is equivalenced to another, and/or has an assigned
handler procedure. Unlike the SET_OPT
macro,
this macro does not allow an option argument.
DISABLE_OPT_NAME; |
[ < ] | [ > ] | [ << ] | [ Up ] | [ >> ] | [Top] | [Contents] | [Index] | [ ? ] |
Yields true if the option defaults to disabled and
ISUNUSED_OPT()
would yield true. It also yields true if
the option has been specified with a disablement prefix,
disablement value or the DISABLE_OPT_NAME
macro was invoked.
[ < ] | [ > ] | [ << ] | [ Up ] | [ >> ] | [Top] | [Contents] | [Index] | [ ? ] |
When it is necessary to continue (return to caller) on option errors, invoke this option. It is reversible. See section ERRSTOP_OPTERR - Stop on Errors.
[ < ] | [ > ] | [ << ] | [ Up ] | [ >> ] | [Top] | [Contents] | [Index] | [ ? ] |
After invoking this macro, if optionProcess()
encounters an error, it will call exit(1)
rather than return.
This is the default processing mode. It can be overridden by
specifying allow-errors
in the definitions file,
or invoking the macro See section ERRSKIP_OPTERR - Ignore Option Errors.
[ < ] | [ > ] | [ << ] | [ Up ] | [ >> ] | [Top] | [Contents] | [Index] | [ ? ] |
This macro yields true if the option has been specified in any fashion at all. It is used thus:
if (HAVE_OPT( NAME )) { <do-things-associated-with-opt-name>; } |
[ < ] | [ > ] | [ << ] | [ Up ] | [ >> ] | [Top] | [Contents] | [Index] | [ ? ] |
This macro yields true if the option has been specified either on the command line or via a SET/DISABLE macro.
[ < ] | [ > ] | [ << ] | [ Up ] | [ >> ] | [Top] | [Contents] | [Index] | [ ? ] |
This macro yields true if the option has
never been specified, or has been cleared via the
CLEAR_OPT()
macro.
[ < ] | [ > ] | [ << ] | [ Up ] | [ >> ] | [Top] | [Contents] | [Index] | [ ? ] |
The full count of all options, both those defined and those generated automatically by AutoOpts. This is primarily used to initialize the program option descriptor structure.
[ < ] | [ > ] | [ << ] | [ Up ] | [ >> ] | [Top] | [Contents] | [Index] | [ ? ] |
The option argument value as a pointer to string. Note that argument
values that have been specified as numbers are stored as numbers or
keywords. For such options, use instead the OPT_VALUE_name
define. It is used thus:
if (HAVE_OPT( NAME )) { char* p = OPT_ARG( NAME ); <do-things-with-opt-name-argument-string>; } |
[ < ] | [ > ] | [ << ] | [ Up ] | [ >> ] | [Top] | [Contents] | [Index] | [ ? ] |
This macro gets emitted only for options that take numeric, keyword or set membership arguments. The macro yields a word-sized integer containing the enumeration or numeric value of the option argument.
int opt_val = OPT_VALUE_NAME; |
[ < ] | [ > ] | [ << ] | [ Up ] | [ >> ] | [Top] | [Contents] | [Index] | [ ? ] |
If option processing has stopped (either because of an error
or something was encountered that looked like a program argument),
it can be resumed by providing this macro with the index n
of the next option to process and calling optionProcess()
again.
[ < ] | [ > ] | [ << ] | [ Up ] | [ >> ] | [Top] | [Contents] | [Index] | [ ? ] |
This macro gets emitted only when the given
option has the settable
attribute specified.
The form of the macro will actually depend on whether the option is equivalenced to another, has an option argument and/or has an assigned handler procedure. If the option has an argument, then this macro will too. Beware that the argument is not reallocated, so the value must not be on the stack or deallocated in any other way for as long as the value might get referenced.
If you have supplied at least one `homerc' file
(see section Program Description Attributes), this macro will be emitted for the
--save-opts
option.
SET_OPT_SAVE_OPTS( "filename" ); |
See section Automatically Supported Options, for a discussion of the implications of using this particular example.
[ < ] | [ > ] | [ << ] | [ Up ] | [ >> ] | [Top] | [Contents] | [Index] | [ ? ] |
When the option handling attribute is specified
as stack_arg
, this macro may be used to determine how
many of them actually got stacked.
Do not use this on options that have not been stacked or has not been
specified (the stack_arg
attribute must have been specified,
and HAVE_OPT(<NAME>)
must yield TRUE).
Otherwise, you will likely seg fault.
if (HAVE_OPT( NAME )) { int ct = STACKCT_OPT( NAME ); char** pp = STACKLST_OPT( NAME ); do { char* p = *pp++; do-things-with-p; } while (--ct > 0); } |
[ < ] | [ > ] | [ << ] | [ Up ] | [ >> ] | [Top] | [Contents] | [Index] | [ ? ] |
The address of the list of pointers to the option arguments. The pointers are ordered by the order in which they were encountered in the option presets and command line processing.
Do not use this on options that have not been stacked or has not been
specified (the stack_arg
attribute must have been specified,
and HAVE_OPT(<OPTION>)
must yield TRUE).
Otherwise, you will likely seg fault.
if (HAVE_OPT( NAME )) { int ct = STACKCT_OPT( NAME ); char** pp = STACKLST_OPT( NAME ); do { char* p = *pp++; do-things-with-p; } while (--ct > 0); } |
[ < ] | [ > ] | [ << ] | [ Up ] | [ >> ] | [Top] | [Contents] | [Index] | [ ? ] |
This is just a shortcut for RESTART_OPT(1) (See section RESTART_OPT( n ) - Resume Option Processing.)
[ < ] | [ > ] | [ << ] | [ Up ] | [ >> ] | [Top] | [Contents] | [Index] | [ ? ] |
If you need to know if an option was set because of presetting actions
(configuration file processing or environment variables), versus a command
line entry versus one of the SET/DISABLE macros, then use this macro. It
will yield one of four values: OPTST_INIT
, OPTST_SET
,
OPTST_PRESET
or OPTST_DEFINED
. It is used thus:
switch (STATE_OPT( NAME )) { case OPTST_INIT: not-preset, set or on the command line. (unless CLEAR-ed) case OPTST_SET: option set via the SET_OPT_NAME() macro. case OPTST_PRESET: option set via an configuration file or environment variable case OPTST_DEFINED: option set via a command line option. default: cannot happen :) } |
[ < ] | [ > ] | [ << ] | [ Up ] | [ >> ] | [Top] | [Contents] | [Index] | [ ? ] |
This macro invokes the procedure registered to display
the usage text. Normally, this will be optionUsage
from the
AutoOpts library, but you may select another procedure by specifying
usage = "proc_name"
program attribute. This procedure must
take two arguments first, a pointer to the option descriptor, and
second the exit code. The macro supplies the option descriptor
automatically. This routine is expected to call exit(3)
with
the provided exit code.
The optionUsage
routine also behaves differently depending
on the exit code. If the exit code is zero, it is assumed that
assistance has been requested. Consequently, a little more
information is provided than when displaying usage and exiting
with a non-zero exit code.
[ < ] | [ > ] | [ << ] | [ Up ] | [ >> ] | [Top] | [Contents] | [Index] | [ ? ] |
This is a #define for the flag character used to
specify an option on the command line. If value
was not
specified for the option, then it is a unique number associated
with the option. option value
refers to this value,
option argument
refers to the (optional) argument to the
option.
switch (WHICH_OPT_OTHER_OPT) { case VALUE_OPT_NAME: this-option-was-really-opt-name; case VALUE_OPT_OTHER_OPT: this-option-was-really-other-opt; } |
[ < ] | [ > ] | [ << ] | [ Up ] | [ >> ] | [Top] | [Contents] | [Index] | [ ? ] |
If the version
attribute is defined for the program,
then a stringified version will be #defined as PROGRAM_VERSION and
PROGRAM_FULL_VERSION. PROGRAM_FULL_VERSION is used for printing
the program version in response to the version option. The version
option is automatically supplied in response to this attribute, too.
You may access PROGRAM_VERSION via programOptions.pzFullVersion
.
[ < ] | [ > ] | [ << ] | [ Up ] | [ >> ] | [Top] | [Contents] | [Index] | [ ? ] |
This macro gets emitted only for equivalenced-to options. It is used to obtain the index for the one of the several equivalence class members set the equivalenced-to option.
switch (WHICH_IDX_OTHER_OPT) { case INDEX_OPT_NAME: this-option-was-really-opt-name; case INDEX_OPT_OTHER_OPT: this-option-was-really-other-opt; } |
[ < ] | [ > ] | [ << ] | [ Up ] | [ >> ] | [Top] | [Contents] | [Index] | [ ? ] |
This macro gets emitted only for equivalenced-to options. It is used to obtain the value code for the one of the several equivalence class members set the equivalenced-to option.
switch (WHICH_OPT_OTHER_OPT) { case VALUE_OPT_NAME: this-option-was-really-opt-name; case VALUE_OPT_OTHER_OPT: this-option-was-really-other-opt; } |
[ < ] | [ > ] | [ << ] | [ Up ] | [ >> ] | [Top] | [Contents] | [Index] | [ ? ] |
This enum defines the complete set of options, both user specified and automatically provided. This can be used, for example, to distinguish which of the equivalenced options was actually used.
switch (pOptDesc->optActualIndex) { case INDEX_OPT_FIRST: stuff; case INDEX_OPT_DIFFERENT: different-stuff; default: unknown-things; } |
[ < ] | [ > ] | [ << ] | [ Up ] | [ >> ] | [Top] | [Contents] | [Index] | [ ? ] |
You will not actually need to reference this value, but you need to be
aware that it is there. It is the first value in the option descriptor
that you pass to optionProcess
. It contains a magic number and
version information. Normally, you should be able to work with a more
recent option library than the one you compiled with. However, if the
library is changed incompatibly, then the library will detect the out of
date magic marker, explain the difficulty and exit. You will then need
to rebuild and recompile your option definitions. This has rarely been
necessary.
[ < ] | [ > ] | [ << ] | [ Up ] | [ >> ] | [Top] | [Contents] | [Index] | [ ? ] |
These are the routines that libopts users may call directly from their code. There are several other routines that can be called by code generated by the libopts option templates, but they are not to be called from any other user code. The `options.h' header is fairly clear about this, too.
This subsection was automatically generated by AutoGen using extracted information and the aginfo3.tpl template.
[ < ] | [ > ] | [ << ] | [ Up ] | [ >> ] | [Top] | [Contents] | [Index] | [ ? ] |
tokenize an input string
Usage:
token_list_t* res = ao_string_tokenize( string ); |
Where the arguments are:
Name | Type | Description | |
--- | --- | --------- | |
string | | string to be tokenized | |
returns | token_list_t* | pointer to a structure that lists each token |
This function will convert one input string into a list of strings. The list of strings is derived by separating the input based on white space separation. However, if the input contains either single or double quote characters, then the text after that character up to a matching quote will become the string in the list.
The returned pointer should be deallocated with free(3C)
when
are done using the data. The data are placed in a single block of
allocated memory. Do not deallocate individual token/strings.
The structure pointed to will contain at least these two fields:
The number of tokens found in the input string.
An array of tkn_ct + 1
pointers to substring tokens, with
the last pointer set to NULL.
There are two types of quoted strings: single quoted ('
) and
double quoted ("
). Singly quoted strings are fairly raw in that
escape characters (\\
) are simply another character, except when
preceding the following characters:
|
Double quote strings are formed according to the rules of string constants in ANSI-C programs.
NULL is returned and errno
will be set to indicate the problem:
EINVAL
- There was an unterminated quoted string.
ENOENT
- The input string was empty.
ENOMEM
- There is not enough memory.
[ < ] | [ > ] | [ << ] | [ Up ] | [ >> ] | [Top] | [Contents] | [Index] | [ ? ] |
parse a configuration file
Usage:
const tOptionValue* res = configFileLoad( pzFile ); |
Where the arguments are:
Name | Type | Description | |
--- | --- | --------- | |
pzFile | | the file to load | |
returns | const tOptionValue* | An allocated, compound value structure |
This routine will load a named configuration file and parse the
text as a hierarchically valued option. The option descriptor
created from an option definition file is not used via this interface.
The returned value is "named" with the input file name and is of
type "OPARG_TYPE_HIERARCHY
". It may be used in calls to
optionGetValue()
, optionNextValue()
and
optionUnloadNested()
.
If the file cannot be loaded or processed, NULL
is returned and
errno is set. It may be set by a call to either open(2)
mmap(2)
or other file system calls, or it may be:
ENOENT
- the file was empty.
EINVAL
- the file contents are invalid - not properly formed.
ENOMEM
- not enough memory to allocate the needed structures.
[ < ] | [ > ] | [ << ] | [ Up ] | [ >> ] | [Top] | [Contents] | [Index] | [ ? ] |
Load the locatable config files, in order
Usage:
int res = optionFileLoad( pOpts, pzProg ); |
Where the arguments are:
Name | Type | Description | |
--- | --- | --------- | |
pOpts | | program options descriptor | |
pzProg | | program name | |
returns | int | 0 -> SUCCESS, -1 -> FAILURE |
This function looks in all the specified directories for a configuration file ("rc" file or "ini" file) and processes any found twice. The first time through, they are processed in reverse order (last file first). At that time, only "immediate action" configurables are processed. For example, if the last named file specifies not processing any more configuration files, then no more configuration files will be processed. Such an option in the first named directory will have no effect.
Once the immediate action configurables have been handled, then the directories are handled in normal, forward order. In that way, later config files can override the settings of earlier config files.
See the AutoOpts documentation for a thorough discussion of the config file format.
Configuration files not found or not decipherable are simply ignored.
Returns the value, "-1" if the program options descriptor is out of date or indecipherable. Otherwise, the value "0" will always be returned.
[ < ] | [ > ] | [ << ] | [ Up ] | [ >> ] | [Top] | [Contents] | [Index] | [ ? ] |
find a hierarcicaly valued option instance
Usage:
const tOptionValue* res = optionFindNextValue( pOptDesc, pPrevVal, name, value ); |
Where the arguments are:
Name | Type | Description | |
--- | --- | --------- | |
pOptDesc | | an option with a nested arg type | |
pPrevVal | | the last entry | |
name | | name of value to find | |
value | | the matching value | |
returns | const tOptionValue* | a compound value structure |
This routine will find the next entry in a nested value option or configurable. It will search through the list and return the next entry that matches the criteria.
The returned result is NULL and errno is set:
EINVAL
- the pOptValue
does not point to a valid
hierarchical option value.
ENOENT
- no entry matched the given name.
[ < ] | [ > ] | [ << ] | [ Up ] | [ >> ] | [Top] | [Contents] | [Index] | [ ? ] |
find a hierarcicaly valued option instance
Usage:
const tOptionValue* res = optionFindValue( pOptDesc, name, value ); |
Where the arguments are:
Name | Type | Description | |
--- | --- | --------- | |
pOptDesc | | an option with a nested arg type | |
name | | name of value to find | |
value | | the matching value | |
returns | const tOptionValue* | a compound value structure |
This routine will find an entry in a nested value option or configurable. It will search through the list and return a matching entry.
The returned result is NULL and errno is set:
EINVAL
- the pOptValue
does not point to a valid
hierarchical option value.
ENOENT
- no entry matched the given name.
[ < ] | [ > ] | [ << ] | [ Up ] | [ >> ] | [Top] | [Contents] | [Index] | [ ? ] |
free allocated option processing memory
Usage:
optionFree( pOpts ); |
Where the arguments are:
Name | Type | Description | |
--- | --- | --------- | |
pOpts | | program options descriptor |
AutoOpts sometimes allocates memory and puts pointers to it in the option state structures. This routine deallocates all such memory.
As long as memory has not been corrupted, this routine is always successful.
[ < ] | [ > ] | [ << ] | [ Up ] | [ >> ] | [Top] | [Contents] | [Index] | [ ? ] |
get a specific value from a hierarcical list
Usage:
const tOptionValue* res = optionGetValue( pOptValue, valueName ); |
Where the arguments are:
Name | Type | Description | |
--- | --- | --------- | |
pOptValue | | a hierarchcal value | |
valueName | | name of value to get | |
returns | const tOptionValue* | a compound value structure |
This routine will find an entry in a nested value option or configurable. If "valueName" is NULL, then the first entry is returned. Otherwise, the first entry with a name that exactly matches the argument will be returned.
The returned result is NULL and errno is set:
EINVAL
- the pOptValue
does not point to a valid
hierarchical option value.
ENOENT
- no entry matched the given name.
[ < ] | [ > ] | [ << ] | [ Up ] | [ >> ] | [Top] | [Contents] | [Index] | [ ? ] |
process a string for an option name and value
Usage:
optionLoadLine( pOpts, pzLine ); |
Where the arguments are:
Name | Type | Description | |
--- | --- | --------- | |
pOpts | | program options descriptor | |
pzLine | | NUL-terminated text |
This is a client program callable routine for setting options from, for example, the contents of a file that they read in. Only one option may appear in the text. It will be treated as a normal (non-preset) option.
When passed a pointer to the option struct and a string, it will find the option named by the first token on the string and set the option argument to the remainder of the string. The caller must NUL terminate the string. Any embedded new lines will be included in the option argument. If the input looks like one or more quoted strings, then the input will be "cooked". The "cooking" is identical to the string formation used in AutoGen definition files (see section Basic Expression), except that you may not use backquotes.
Invalid options are silently ignored. Invalid option arguments will cause a warning to print, but the function should return.
[ < ] | [ > ] | [ << ] | [ Up ] | [ >> ] | [Top] | [Contents] | [Index] | [ ? ] |
get the next value from a hierarchical list
Usage:
const tOptionValue* res = optionNextValue( pOptValue, pOldValue ); |
Where the arguments are:
Name | Type | Description | |
--- | --- | --------- | |
pOptValue | | a hierarchcal list value | |
pOldValue | | a value from this list | |
returns | const tOptionValue* | a compound value structure |
This routine will return the next entry after the entry passed in. At the
end of the list, NULL will be returned. If the entry is not found on the
list, NULL will be returned and "errno" will be set to EINVAL.
The "pOldValue" must have been gotten from a prior call to this
routine or to "opitonGetValue()
".
The returned result is NULL and errno is set:
EINVAL
- the pOptValue
does not point to a valid
hierarchical option value or pOldValue
does not point to a
member of that option value.
ENOENT
- the supplied pOldValue
pointed to the last entry.
[ < ] | [ > ] | [ << ] | [ Up ] | [ >> ] | [Top] | [Contents] | [Index] | [ ? ] |
Print usage text for just the options
Usage:
optionOnlyUsage( pOpts, ex_code ); |
Where the arguments are:
Name | Type | Description | |
--- | --- | --------- | |
pOpts | | program options descriptor | |
ex_code | | exit code for calling exit(3) |
This routine will print only the usage for each option. This function may be used when the emitted usage must incorporate information not available to AutoOpts.
[ < ] | [ > ] | [ << ] | [ Up ] | [ >> ] | [Top] | [Contents] | [Index] | [ ? ] |
this is the main option processing routine
Usage:
int res = optionProcess( pOpts, argc, argv ); |
Where the arguments are:
Name | Type | Description | |
--- | --- | --------- | |
pOpts | | program options descriptor | |
argc | | program arg count | |
argv | | program arg vector | |
returns | int | the count of the arguments processed |
This is the main entry point for processing options. It is intended that this procedure be called once at the beginning of the execution of a program. Depending on options selected earlier, it is sometimes necessary to stop and restart option processing, or to select completely different sets of options. This can be done easily, but you generally do not want to do this.
The number of arguments processed always includes the program name. If one of the arguments is "-", then it is counted and the processing stops. If an error was encountered and errors are to be tolerated, then the returned value is the index of the argument causing the error. A hyphen by itself ("-") will also cause processing to stop and will not be counted among the processed arguments. A hyphen by itself is treated as an operand. Encountering an operand stops option processing.
Errors will cause diagnostics to be printed. exit(3)
may
or may not be called. It depends upon whether or not the options
were generated with the "allow-errors" attribute, or if the
ERRSKIP_OPTERR or ERRSTOP_OPTERR macros were invoked.
[ < ] | [ > ] | [ << ] | [ Up ] | [ >> ] | [Top] | [Contents] | [Index] | [ ? ] |
restore option state from memory copy
Usage:
optionRestore( pOpts ); |
Where the arguments are:
Name | Type | Description | |
--- | --- | --------- | |
pOpts | | program options descriptor |
Copy back the option state from saved memory. The allocated memory is left intact, so this routine can be called repeatedly without having to call optionSaveState again. If you are restoring a state that was saved before the first call to optionProcess(3AO), then you may change the contents of the argc/argv parameters to optionProcess.
If you have not called optionSaveState
before, a diagnostic is
printed to stderr
and exit is called.
[ < ] | [ > ] | [ << ] | [ Up ] | [ >> ] | [Top] | [Contents] | [Index] | [ ? ] |
saves the option state to a file
Usage:
optionSaveFile( pOpts ); |
Where the arguments are:
Name | Type | Description | |
--- | --- | --------- | |
pOpts | | program options descriptor |
This routine will save the state of option processing to a file. The name
of that file can be specified with the argument to the --save-opts
option, or by appending the rcfile
attribute to the last
homerc
attribute. If no rcfile
attribute was specified, it
will default to .programnamerc
. If you wish to specify another
file, you should invoke the SET_OPT_SAVE_OPTS( filename )
macro.
If no homerc
file was specified, this routine will silently return
and do nothing. If the output file cannot be created or updated, a message
will be printed to stderr
and the routine will return.
[ < ] | [ > ] | [ << ] | [ Up ] | [ >> ] | [Top] | [Contents] | [Index] | [ ? ] |
saves the option state to memory
Usage:
optionSaveState( pOpts ); |
Where the arguments are:
Name | Type | Description | |
--- | --- | --------- | |
pOpts | | program options descriptor |
This routine will allocate enough memory to save the current option processing state. If this routine has been called before, that memory will be reused. You may only save one copy of the option state. This routine may be called before optionProcess(3AO). If you do call it before the first call to optionProcess, then you may also change the contents of argc/argv after you call optionRestore(3AO)
If it fails to allocate the memory, it will print a message to stderr and exit. Otherwise, it will always succeed.
[ < ] | [ > ] | [ << ] | [ Up ] | [ >> ] | [Top] | [Contents] | [Index] | [ ? ] |
Deallocate the memory for a nested value
Usage:
optionUnloadNested( pOptVal ); |
Where the arguments are:
Name | Type | Description | |
--- | --- | --------- | |
pOptVal | | the hierarchical value |
A nested value needs to be deallocated. The pointer passed in should
have been gotten from a call to configFileLoad()
(See
see section configFileLoad).
[ < ] | [ > ] | [ << ] | [ Up ] | [ >> ] | [Top] | [Contents] | [Index] | [ ? ] |
return the compiled AutoOpts version number
Usage:
char const* res = optionVersion(); |
Where the arguments are:
Name | Type | Description | |
--- | --- | --------- | |
returns | char const* | the version string in constant memory |
Returns the full version string compiled into the library. The returned string cannot be modified.
[ < ] | [ > ] | [ << ] | [ Up ] | [ >> ] | [Top] | [Contents] | [Index] | [ ? ] |
fild a file in a list of directories
Usage:
char* res = pathfind( path, file, mode ); |
Where the arguments are:
Name | Type | Description | |
--- | --- | --------- | |
path | | colon separated list of search directories | |
file | | the name of the file to look for | |
mode | | the mode bits that must be set to match | |
returns | char* | the path to the located file |
pathfind looks for a a file with name "FILE" and "MODE" access along colon delimited "PATH", and returns the full pathname as a string, or NULL if not found. If "FILE" contains a slash, then it is treated as a relative or absolute path and "PATH" is ignored.
NOTE: this function is compiled into `libopts' only if it is not natively supplied.
The "MODE" argument is a string of option letters chosen from the list below:
Letter Meaning r readable w writable x executable f normal file (NOT IMPLEMENTED) b block special (NOT IMPLEMENTED) c character special (NOT IMPLEMENTED) d directory (NOT IMPLEMENTED) p FIFO (pipe) (NOT IMPLEMENTED) u set user ID bit (NOT IMPLEMENTED) g set group ID bit (NOT IMPLEMENTED) k sticky bit (NOT IMPLEMENTED) s size nonzero (NOT IMPLEMENTED) |
returns NULL if the file is not found.
[ < ] | [ > ] | [ << ] | [ Up ] | [ >> ] | [Top] | [Contents] | [Index] | [ ? ] |
map a list of characters to the same value
Usage:
strequate( ch_list ); |
Where the arguments are:
Name | Type | Description | |
--- | --- | --------- | |
ch_list | | characters to equivalence |
Each character in the input string get mapped to the first character in the string. This function name is mapped to option_strequate so as to not conflict with the POSIX name space.
none.
[ < ] | [ > ] | [ << ] | [ Up ] | [ >> ] | [Top] | [Contents] | [Index] | [ ? ] |
compare two strings with an equivalence mapping
Usage:
int res = streqvcmp( str1, str2 ); |
Where the arguments are:
Name | Type | Description | |
--- | --- | --------- | |
str1 | | first string | |
str2 | | second string | |
returns | int | the difference between two differing characters |
Using a character mapping, two strings are compared for "equivalence". Each input character is mapped to a comparison character and the mapped-to characters are compared for the two NUL terminated input strings. This function name is mapped to option_streqvcmp so as to not conflict with the POSIX name space.
none checked. Caller responsible for seg faults.
[ < ] | [ > ] | [ << ] | [ Up ] | [ >> ] | [Top] | [Contents] | [Index] | [ ? ] |
Set the character mappings for the streqv functions
Usage:
streqvmap( From, To, ct ); |
Where the arguments are:
Name | Type | Description | |
--- | --- | --------- | |
From | | Input character | |
To | | Mapped-to character | |
ct | | compare length |
Set the character mapping. If the count (ct
) is set to zero, then
the map is cleared by setting all entries in the map to their index
value. Otherwise, the "From
" character is mapped to the "To
"
character. If ct
is greater than 1, then From
and To
are incremented and the process repeated until ct
entries have been
set. For example,
streqvmap( 'a', 'A', 26 ); |
will alter the mapping so that all English lower case letters will map to upper case.
This function name is mapped to option_streqvmap so as to not conflict with the POSIX name space.
none.
[ < ] | [ > ] | [ << ] | [ Up ] | [ >> ] | [Top] | [Contents] | [Index] | [ ? ] |
compare two strings with an equivalence mapping
Usage:
int res = strneqvcmp( str1, str2, ct ); |
Where the arguments are:
Name | Type | Description | |
--- | --- | --------- | |
str1 | | first string | |
str2 | | second string | |
ct | | compare length | |
returns | int | the difference between two differing characters |
Using a character mapping, two strings are compared for "equivalence".
Each input character is mapped to a comparison character and the
mapped-to characters are compared for the two NUL terminated input strings.
The comparison is limited to ct
bytes.
This function name is mapped to option_strneqvcmp so as to not conflict
with the POSIX name space.
none checked. Caller responsible for seg faults.
[ < ] | [ > ] | [ << ] | [ Up ] | [ >> ] | [Top] | [Contents] | [Index] | [ ? ] |
convert a string into its mapped-to value
Usage:
strtransform( dest, src ); |
Where the arguments are:
Name | Type | Description | |
--- | --- | --------- | |
dest | | output string | |
src | | input string |
Each character in the input string is mapped and the mapped-to character is put into the output. This function name is mapped to option_strtransform so as to not conflict with the POSIX name space.
none.
[ < ] | [ > ] | [ << ] | [ Up ] | [ >> ] | [Top] | [Contents] | [Index] | [ ? ] |
This is the module that is to be compiled and linked with your program.
It contains internal data and procedures subject to change. Basically,
it contains a single global data structure containing all the
information provided in the option definitions, plus a number of static
strings and any callout procedures that are specified or required. You
should never have need for looking at this, except, perhaps, to examine
the code generated for implementing the flag_code
construct.
[ < ] | [ > ] | [ << ] | [ Up ] | [ >> ] | [Top] | [Contents] | [Index] | [ ? ] |
There are actually several levels of "using" autoopts. Which you choose depends upon how you plan to distribute (or not) your application.
7.8.1 local-only use | ||
7.8.2 binary distro, AutoOpts not installed | ||
7.8.3 binary distro, AutoOpts pre-installed | ||
7.8.4 source distro, AutoOpts pre-installed | ||
7.8.5 source distro, AutoOpts not installed |
[ < ] | [ > ] | [ << ] | [ Up ] | [ >> ] | [Top] | [Contents] | [Index] | [ ? ] |
To use AutoOpts in your application where you do not have to worry about distribution issues, your issues are simple and few.
myopts.h
)
and the option descriptor code (myopts.c
):
autogen myopts.def |
#include "myopts.h"
.
#define ARGC_MIN some-lower-limit #define ARGC_MAX some-upper-limit main( int argc, char** argv ) { { int arg_ct = optionProcess( &myprogOptions, argc, argv ); argc -= arg_ct; if ((argc < ARGC_MIN) || (argc > ARGC_MAX)) { fprintf( stderr, "%s ERROR: remaining args (%d) " "out of range\n", myprogOptions.pzProgName, argc ); USAGE( EXIT_FAILURE ); } argv += arg_ct; } if (HAVE_OPT(OPTN_NAME)) respond_to_optn_name(); ... } |
myopts.c -I$prefix/include -L $prefix/lib -lopts |
These values can be derived from the "autoopts-config" script:
myopts.c `autoopts-config cflags` `autoopts-config ldflags` |
[ < ] | [ > ] | [ << ] | [ Up ] | [ >> ] | [Top] | [Contents] | [Index] | [ ? ] |
If you will be distributing (or copying) your project to a system that does not have AutoOpts installed, you will need to statically link the AutoOpts library, "libopts" into your program. Add the output from the following to your link command:
autoopts-config static-libs |
[ < ] | [ > ] | [ << ] | [ Up ] | [ >> ] | [Top] | [Contents] | [Index] | [ ? ] |
If you will be distributing (or copying) your project to a system that does
have AutoOpts (or only "libopts") installed, you will still need to ensure
that the library is findable at program load time, or you will still have to
statically link. The former can be accomplished by linking your project with
--rpath
or by setting the LD_LIBRARY_PATH
appropriately.
Otherwise, See section binary distro, AutoOpts not installed.
[ < ] | [ > ] | [ << ] | [ Up ] | [ >> ] | [Top] | [Contents] | [Index] | [ ? ] |
If you will be distributing your project to a system that will build your product but it may not be pre-installed with AutoOpts, you will need to do some configuration checking before you start the build. Assuming you are willing to fail the build if AutoOpts has not been installed, you will still need to do a little work.
AutoOpts is distributed with a configuration check M4 script,
`autoopts.m4'. It will add an autoconf
macro named,
AG_PATH_AUTOOPTS
. Add this to your `configure.ac' script
and use the following substitution values:
AUTOGEN
the name of the autogen executable
AUTOGEN_TPLIB
the directory where AutoGen template library is stored
AUTOOPTS_CFLAGS
the compile time options needed to find the AutoOpts headers
AUTOOPTS_LIBS
the link options required to access the libopts
library
[ < ] | [ > ] | [ << ] | [ Up ] | [ >> ] | [Top] | [Contents] | [Index] | [ ? ] |
If you will be distributing your project to a system that will build
your product but it may not be pre-installed with AutoOpts, you may
wish to incorporate the sources for libopts
in your project.
To do this, I recommend reading the tear-off libopts library
`README' that you can find in the `pkg/libopts' directory.
You can also examine an example package (blocksort) that incorporates
this tear off library in the autogen distribution directory. There is
also a web page that describes what you need to do:
http://autogen.sourceforge.net/blocksort.html |
Alternatively, you can pull the libopts
library sources into
a build directory and build it for installation along with your package.
This can be done approximately as follows:
tar -xzvf `autoopts-config libsrc` cd libopts-* ./bootstrap configure make make install |
That will install the library, but not the headers or anything else.
[ < ] | [ > ] | [ << ] | [ Up ] | [ >> ] | [Top] | [Contents] | [Index] | [ ? ] |
AutoOpts supports the notion of "presetting" the value or state of an option.
The values may be obtained either from environment variables or from
configuration files (`rc' or `ini' files). In order to take
advantage of this, the AutoOpts client program must specify these features
in the option descriptor file (see section Program Description Attributes) with the
rcfile
or environrc
attributes.
7.9.1 configuration file presets | ||
7.9.2 Saving the presets into a configuration file | ||
7.9.3 Creating a sample configuration file | ||
7.9.4 environment variable presets |
It is also possible to configure your program without using the command line option parsing code. This is done by using only the following four functions from the `libopts' library:
(see section configFileLoad) will parse the contents of a config file and return a pointer to a structure representing the hierarchical value. The values are sorted alphabetically by the value name and all entries with the same name will retain their original order. Insertion sort is used.
(see section optionGetValue) will find the first value within the hierarchy with a name that matches the name passed in.
(see section optionNextValue) will return the next value that follows the value passed in as an argument. If you wish to get all the values for a particular name, you must take note when the name changes.
(see section optionUnloadNested). The pointer passed in must be
of type, OPARG_TYPE_HIERARCHY
(see the autoopts/options.h
header file). configFileLoad
will return a tOptionValue
pointer of that type. This function will release all the associated
memory. AutoOpts
generated code uses this function for its own
needs. Client code should only call this function with pointers
gotten from configFileLoad
.
7.9.5 Config file only example |
[ < ] | [ > ] | [ << ] | [ Up ] | [ >> ] | [Top] | [Contents] | [Index] | [ ? ] |
Configuration files are enabled by specifying the program attribute
homerc
(see section Program Description Attributes). Any option not marked
with the "no-preset" attribute may appear in a configuration file.
The files loaded are selected both by the homerc
entries and,
optionally, via a command line option. The first component of the
homerc
entry may be an environment variable such as $HOME
, or
it may also be $$
(two dollar sign characters) to specify
the directory of the executable. For example:
homerc = "$$/../share/autogen"; |
will cause the AutoOpts library to look in the normal autogen datadir relative to the current installation directory for autogen.
The configuration files are processed in the order they are specified by
the homerc
attribute, so that each new file will normally override
the settings of the previous files. This may be overridden by marking some
options for immediate action
(see section Immediate Action Attributes). Any such
options are acted upon in reverse order. The disabled
load-opts
(--no-load-opts
) option, for example, is an
immediate action option. Its presence in the last homerc
file will
prevent the processing of any prior homerc
files because its effect
is immediate.
Configuration file processing can be completely suppressed by specifying
--no-load-opts
on the command line, or PROGRAM_LOAD_OPTS=no
in
the environment (if environrc
has been specified).
See the "Configuration File Format" section (see section Configuration File Format) for details on the format of the file.
[ < ] | [ > ] | [ << ] | [ Up ] | [ >> ] | [Top] | [Contents] | [Index] | [ ? ] |
When configuration files are enabled for an application, the user is
also provided with an automatically supplied --save-opts
option.
All of the known option state will be written to either the specified
output file or, if it is not specified, then to the last specified
homerc
file.
[ < ] | [ > ] | [ << ] | [ Up ] | [ >> ] | [Top] | [Contents] | [Index] | [ ? ] |
AutoOpts is shipped with a template named, `rc-sample.tpl'.
If your option definition file specifies the homerc
attribute,
then you may invoke `autogen' thus:
autogen -Trc-sample <your-option-def-file> |
This will, by default, produce a sample file named,
`sample-<prog-name>rc'. It will be named differently if you specify your
configuration (rc) file name with the rcfile
attribute. In that case,
the output file will be named, `sample-<rcfile-name>'. It will contain
all of the program options not marked as no-preset
. It will also
include information about how they are handled and the text from the
doc
attribute.
[ < ] | [ > ] | [ << ] | [ Up ] | [ >> ] | [Top] | [Contents] | [Index] | [ ? ] |
If the AutoOpts client program specifies environrc
in its
option descriptor file, then environment variables will be used for
presetting option state. Variables will be looked for that are named,
PROGRAM_OPTNAME
and PROGRAM
. PROGRAM
is the
upper cased C-name
of the program, and OPTNAME
is the
upper cased C-name
of a specific option. (The C-name
s
are the regular names with all special characters converted to
underscores (_
).)
Option specific environment variables are processed after (and thus
take precedence over) the contents of the PROGRAM
environment
variable. The option argument string for these options takes on the
string value gotten from the environment. Consequently, you can only
have one instance of the OPTNAME
.
If a particular option may be disabled, then its disabled state is
indicated by setting the PROGRAM_OPTNAME
value to the
disablement prefix. So, for example, if the disablement prefix were
dont
, then you can disable the optname
option by setting
the PROGRAM_OPTNAME
' environment variable to `dont'.
See section Common Option Attributes.
The PROGRAM
environment string is tokenized and parsed much
like a command line. Doubly quoted strings have backslash escapes
processed the same way they are processed in C program constant
strings. Singly quoted strings are "pretty raw" in that backslashes are
honored before other backslashes, apostrophes, newlines and cr/newline
pairs. The options must be introduced with hyphens in the same way as
the command line.
Note that not all options may be preset. Options that are specified with the
no-preset
attribute and the --help
, --more-help
,
and --save-opts
auto-supported options may not be preset.
[ < ] | [ > ] | [ << ] | [ Up ] | [ >> ] | [Top] | [Contents] | [Index] | [ ? ] |
If for some reason it is difficult or unworkable to integrate configuration
file processing with command line option parsing, the libopts
(see section libopts External Procedures) library can still be used to process configuration
files. Below is a "Hello, World!" greeting program that tries
to load a configuration file `hello.conf' to see if it should use
an alternate greeting or to personalize the salutation.
#include <sys/types.h> #include <stdio.h> #include <pwd.h> #include <string.h> #include <unistd.h> #include <autoopts/options.h> int main( int argc, char** argv ) { char const* greeting = "Hello"; char const* greeted = "World"; const tOptionValue* pOV = configFileLoad( "hello.conf" ); if (pOV != NULL) { const tOptionValue* pGetV = optionGetValue( pOV, "greeting" ); if ( (pGetV != NULL) && (pGetV->valType == OPARG_TYPE_STRING)) greeting = strdup( pGetV->v.strVal ); pGetV = optionGetValue( pOV, "personalize" ); if (pGetV != NULL) { struct passwd* pwe = getpwuid( getuid() ); if (pwe != NULL) greeted = strdup( pwe->pw_gecos ); } optionUnloadNested( pOV ); /* deallocate config data */ } printf( "%s, %s!\n", greeting, greeted ); return 0; } |
With that text in a file named "hello.c", this short script:
cc -o hello hello.c `autoopts-config cflags ldflags` ./hello echo 'greeting Buzz off' > hello.conf ./hello echo personalize > hello.conf ./hello |
will produce the following output (for me):
Hello, World! Buzz off, World! Hello, Bruce Korb! |
[ < ] | [ > ] | [ << ] | [ Up ] | [ >> ] | [Top] | [Contents] | [Index] | [ ? ] |
The configuration file is designed to associate names and values, much like an AutoGen Definition File (see section Definitions File). Unfortunately, the file formats are different. Specifically, AutoGen Definitions provide for simpler methods for the precise control of a value string and provides for dynamically computed content. Configuration files have some established traditions in their layout. So, they are different, even though they do both allow for a single name to be associated with multiple values and they both allow for hierarchical values.
7.10.1 assigning a string value to a configurable | ||
7.10.2 integer values | ||
7.10.3 hierarchical values | ||
7.10.4 configuration file sections | ||
7.10.5 comments in the configuration file |
[ < ] | [ > ] | [ << ] | [ Up ] | [ >> ] | [Top] | [Contents] | [Index] | [ ? ] |
The basic syntax is a name followed by a value on a single line. They are
separated from each other by either white space, a colon (:
) or an
equal sign (=
). The colon or equal sign may optionally be surrounded
by additional white space. If more than one value line is needed, a
backslash (\
) may be used to continue the value. The backslash (but
not the newline) will be erased. Leading and trailing white space is always
stripped from the value.
Fundamentally, it looks like this:
name value for that name name = another \ multi-line value \ for that name. name: a *third* value for ``name'' |
If you need more control over the content of the value, you may enclose the value in XML style brackets:
<name>value </name> |
Within these brackets you need not (must not) continue the value data with
backslashes. You may also select the string formation rules to use, just
add the attribute after the name, thus: <name keep>
.
This mode will keep all text between the brackets and not strip any white space.
This mode strips leading and trailing white space, but not do any quote processing. This is the default and need not be specified.
Strings are formed and concatenated if, after stripping leading and trailing white space, the text begins and ends with either single (') or double (") quote characters. That processing is identical to the string formation used in AutoGen definition files (see section Basic Expression), except that you may not use backquotes.
And here is an example of an XML-styled value:
<name cooked> "This is\n\tanother multi-line\n" "\tstring example." </name> |
The string value associated with "name" will be exactly the text enclosed in quotes with the escaped characters "cooked" as you would expect (three text lines with the last line not ending with a newline, but ending with a period).
[ < ] | [ > ] | [ << ] | [ Up ] | [ >> ] | [Top] | [Contents] | [Index] | [ ? ] |
A name can be specified as having an integer value. To do this, you must use the XML-ish format and specify a "type" attribute for the name:
<name type=integer> 1234 </name> |
Boolean, enumeration and set membership types will be added as time allows. "type=string" is also supported, but also is the default.
[ < ] | [ > ] | [ << ] | [ Up ] | [ >> ] | [Top] | [Contents] | [Index] | [ ? ] |
In order to specify a hierarchical value, you *must* use XML-styled formatting, specifying a type that is shorter and easier to spell:
<structured-name type=nested> [[....]] </structured-name> |
The ellipsis may be filled with any legal configuration file name/value assignments.
[ < ] | [ > ] | [ << ] | [ Up ] | [ >> ] | [Top] | [Contents] | [Index] | [ ? ] |
Configuration files may be sectioned. If, for example, you have a collection of programs that work closely together and, likely, have a common set of options, these programs may use a single, sectioned, configuration file. The file may be sectioned in either of two ways. The two ways may not be intermixed in a single configuration file. All text before the first segmentation line is processed, then only the segment that applies:
The file is partitioned by lines that contains an square open bracket
([
), the upper-cased c-variable-syntax program name
and a square close bracket (]
).
For example, if the prog-name
program had a sectioned
configuration file, then a line containing exactly `[PROG_NAME]'
would be processed.
The <?
marker indicates an XML directive.
The program
directive is interpreted by the configuration file
processor to segment the file in the same way as the `[PROG_NAME]'
sectioning is done. Any other XML directives are treated as comments.
Segmentation does not apply if the config file is being parsed with
the configFileLoad(3AutoOpts)
function.
[ < ] | [ > ] | [ << ] | [ Up ] | [ >> ] | [Top] | [Contents] | [Index] | [ ? ] |
Comments are lines beginning with a hash mark (#
),
XML-style comments (<!-- arbitrary text -->
), and
unrecognized XML directives.
# this is a comment <!-- this is also a comment --> <?this is a bad comment ;-> |
[ < ] | [ > ] | [ << ] | [ Up ] | [ >> ] | [Top] | [Contents] | [Index] | [ ? ] |
AutoOpts may be used with shell scripts either by automatically creating a complete program that will process command line options and pass back the results to the invoking shell by issuing shell variable assignment commands, or it may be used to generate portable shell code that can be inserted into your script.
The functionality of these features, of course, is somewhat constrained compared with the normal program facilities. Specifically, you cannot invoke callout procedures with either of these methods. Additionally, if you generate a shell script to do the parsing:
Both of these methods are enabled by running AutoGen on the definitions file with the additional global attribute:
test-main [ = proc-to-call ] ; |
If you do not supply a proc-to-call
, it will default to
optionPutShell
. That will produce a program that will process the
options and generate shell text for the invoking shell to interpret
(see section Parsing with an Executable). If you supply the name, optionParseShell
, then
you will have a program that will generate a shell script that can parse the
options (see section Parsing with a Portable Script). If you supply a different procedure name,
you will have to provide that routine and it may do whatever you like.
7.11.1 Parsing with an Executable | ||
7.11.2 Parsing with a Portable Script |
[ < ] | [ > ] | [ << ] | [ Up ] | [ >> ] | [Top] | [Contents] | [Index] | [ ? ] |
The following commands are approximately all that is needed to build a shell script command line option parser from an option definition file:
autogen -L <opt-template-dir> test-errors.def cc -o test-errors -L <opt-lib-dir> -I <opt-include-dir> \ -DTEST_PROGRAM_OPTS test-errors.c -lopts |
The resulting program can then be used within your shell script as follows:
eval `./test-errors "$@"` if [ -z "${OPTION_CT}" ] ; then exit 1 ; fi test ${OPTION_CT} -gt 0 && shift ${OPTION_CT} |
Here is the usage output example from AutoOpts error handling tests. The option definition has argument reordering enabled:
test_errors - Test AutoOpts for errors USAGE: errors [ -<flag> [<val>] | --<name>[{=| }<val>] ]... arg ... Flg Arg Option-Name Description -o no option The option option descrip -s Str second The second option descrip - may appear up to 10 times -X no another Another option descrip - may appear up to 5 times -? no help Display usage information and exit -! no more-help Extended usage information passed thru pager -> opt save-opts Save the option state to a config file -< Str load-opts Load options from a config file - disabled as --no-load-opts - may appear multiple times Options are specified by doubled hyphens and their name or by a single hyphen and the flag character. Operands and options may be intermixed. They will be reordered. The following option preset mechanisms are supported: - reading file errorsRC |
Using the invocation,
test-errors operand1 -s first operand2 -X -- -s operand3 |
you get the following output for your shell script to evaluate:
OPTION_CT=4 export OPTION_CT TEST_ERRORS_SECOND='first' export TEST_ERRORS_SECOND TEST_ERRORS_ANOTHER=1 # 0x1 export TEST_ERRORS_ANOTHER set -- 'operand1' 'operand2' '-s' 'operand3' OPTION_CT=0 |
[ < ] | [ > ] | [ << ] | [ Up ] | [ >> ] | [Top] | [Contents] | [Index] | [ ? ] |
If you had used test-main = optionParseShell
instead, then you can,
at this point, merely run the program and it will write the parsing
script to standard out. You may also provide this program with command
line options to specify the shell script file to create or edit, and you
may specify the shell program to use on the first shell script line.
That program's usage text would look something like the following
and the script parser itself would be very verbose:
genshellopt - Generate Shell Option Processing Script - Ver. 1 USAGE: genshellopt [ -<flag> [<val>] | --<name>[{=| }<val>] ]... Flg Arg Option-Name Description -o Str script Output Script File -s Str shell Shell name (follows "#!" magic) - disabled as --no-shell - enabled by default -v opt version Output version information and exit -? no help Display usage information and exit -! no more-help Extended usage information passed thru pager Options are specified by doubled hyphens and their name or by a single hyphen and the flag character. Note that `shell' is only useful if the output file does not already exist. If it does, then the shell name and optional first argument will be extracted from the script file. If the script file already exists and contains Automated Option Processing text, the second line of the file through the ending tag will be replaced by the newly generated text. The first `#!' line will be regenerated. please send bug reports to: autogen-users@lists.sourceforge.net = = = = = = = = This incarnation of genshell will produce a shell script to parse the options for getdefs: getdefs (GNU AutoGen) - AutoGen Definition Extraction Tool - Ver. 1.4 USAGE: getdefs [ <option-name>[{=| }<val>] ]... Arg Option-Name Description Str defs-to-get Regexp to look for after the "/*=" opt ordering Alphabetize or use named file Num first-index The first index to apply to groups Str input Input file to search for defs Str subblock subblock definition names Str listattr attribute with list of values opt filelist Insert source file names into defs Str assign Global assignments Str common-assign Assignments common to all blocks Str copy File(s) to copy into definitions opt srcfile Insert source file name into each def opt linenum Insert source line number into each def Str output Output file to open opt autogen Invoke AutoGen with defs Str template Template Name Str agarg AutoGen Argument Str base-name Base name for output file(s) opt version Output version information and exit no help Display usage information and exit no more-help Extended usage information passed thru pager opt save-opts Save the option state to a config file Str load-opts Load options from a config file All arguments are named options. If no ``input'' argument is provided or is set to simply "-", and if ``stdin'' is not a ``tty'', then the list of input files will be read from ``stdin''. please send bug reports to: autogen-users@lists.sourceforge.net |
Resulting in the following script:
#! /bin/sh # # # # # # # # # # -- do not modify this marker -- # # DO NOT EDIT THIS SECTION OF ./.ag-qskc4F/genshellopt.sh # # From here to the next `-- do not modify this marker --', # the text has been generated Saturday September 30, 2006 at 12:34:33 PM PDT # From the GETDEFS option definitions # GETDEFS_LONGUSAGE_TEXT='getdefs (GNU AutoGen) - AutoGen Definition Extraction Tool - Ver. 1.4 USAGE: getdefs [ <option-name>[{=| }<val>] ]... Arg Option-Name Description Str defs-to-get Regexp to look for after the "/*=" opt ordering Alphabetize or use named file - disabled as --no-ordering - enabled by default Num first-index The first index to apply to groups Str input Input file to search for defs - may appear multiple times - default option for unnamed options Str subblock subblock definition names - may appear multiple times Str listattr attribute with list of values - may appear multiple times opt filelist Insert source file names into defs Definition insertion options Arg Option-Name Description Str assign Global assignments - may appear multiple times Str common-assign Assignments common to all blocks - may appear multiple times Str copy File(s) to copy into definitions - may appear multiple times opt srcfile Insert source file name into each def opt linenum Insert source line number into each def Definition output disposition options: Arg Option-Name Description Str output Output file to open - an alternate for autogen opt autogen Invoke AutoGen with defs - disabled as --no-autogen - enabled by default Str template Template Name Str agarg AutoGen Argument - prohibits these options: output - may appear multiple times Str base-name Base name for output file(s) - prohibits these options: output version and help options: Arg Option-Name Description opt version Output version information and exit no help Display usage information and exit no more-help Extended usage information passed thru pager opt save-opts Save the option state to a config file Str load-opts Load options from a config file - disabled as --no-load-opts - may appear multiple times All arguments are named options. If no ``input'\'''\'' argument is provided or is set to simply "-", and if ``stdin'\'''\'' is not a ``tty'\'''\'', then the list of input files will be read from ``stdin'\'''\''. The following option preset mechanisms are supported: - reading file /dev/null This program extracts AutoGen definitions from a list of source files. Definitions are delimited by `/*=<entry-type> <entry-name>\n'\'' and `=*/\n'\''. From that, this program creates a definition of the following form: #line nnn "source-file-name" entry_type = { name = entry_name; ... }; The ellipsis '\''...'\'' is filled in by text found between the two delimiters, with everything up through the first sequence of asterisks deleted on every line. There are two special ``entry types'\'''\'': * The entry_type enclosure and the name entry will be omitted and the ellipsis will become top-level definitions. -- The contents of the comment must be a single getdefs option. The option name must follow the double hyphen and its argument will be everything following the name. This is intended for use with the ``subblock'\'''\'' and ``listattr'\'''\'' options. please send bug reports to: autogen-users@lists.sourceforge.net' GETDEFS_USAGE_TEXT='getdefs (GNU AutoGen) - AutoGen Definition Extraction Tool - Ver. 1.4 USAGE: getdefs [ <option-name>[{=| }<val>] ]... Arg Option-Name Description Str defs-to-get Regexp to look for after the "/*=" opt ordering Alphabetize or use named file Num first-index The first index to apply to groups Str input Input file to search for defs Str subblock subblock definition names Str listattr attribute with list of values opt filelist Insert source file names into defs Str assign Global assignments Str common-assign Assignments common to all blocks Str copy File(s) to copy into definitions opt srcfile Insert source file name into each def opt linenum Insert source line number into each def Str output Output file to open opt autogen Invoke AutoGen with defs Str template Template Name Str agarg AutoGen Argument Str base-name Base name for output file(s) opt version Output version information and exit no help Display usage information and exit no more-help Extended usage information passed thru pager opt save-opts Save the option state to a config file Str load-opts Load options from a config file All arguments are named options. If no ``input'\'''\'' argument is provided or is set to simply "-", and if ``stdin'\'''\'' is not a ``tty'\'''\'', then the list of input files will be read from ``stdin'\'''\''. please send bug reports to: autogen-users@lists.sourceforge.net' GETDEFS_DEFS_TO_GET="${GETDEFS_DEFS_TO_GET}" GETDEFS_DEFS_TO_GET_set=false export GETDEFS_DEFS_TO_GET GETDEFS_ORDERING="${GETDEFS_ORDERING}" GETDEFS_ORDERING_set=false export GETDEFS_ORDERING GETDEFS_FIRST_INDEX="${GETDEFS_FIRST_INDEX-'0'}" GETDEFS_FIRST_INDEX_set=false export GETDEFS_FIRST_INDEX if test -z "${GETDEFS_INPUT}" then GETDEFS_INPUT_CT=0 else GETDEFS_INPUT_CT=1 GETDEFS_INPUT_1="${GETDEFS_INPUT}" fi export GETDEFS_INPUT_CT if test -z "${GETDEFS_SUBBLOCK}" then GETDEFS_SUBBLOCK_CT=0 else GETDEFS_SUBBLOCK_CT=1 GETDEFS_SUBBLOCK_1="${GETDEFS_SUBBLOCK}" fi export GETDEFS_SUBBLOCK_CT if test -z "${GETDEFS_LISTATTR}" then GETDEFS_LISTATTR_CT=0 else GETDEFS_LISTATTR_CT=1 GETDEFS_LISTATTR_1="${GETDEFS_LISTATTR}" fi export GETDEFS_LISTATTR_CT GETDEFS_FILELIST="${GETDEFS_FILELIST}" GETDEFS_FILELIST_set=false export GETDEFS_FILELIST if test -z "${GETDEFS_ASSIGN}" then GETDEFS_ASSIGN_CT=0 else GETDEFS_ASSIGN_CT=1 GETDEFS_ASSIGN_1="${GETDEFS_ASSIGN}" fi export GETDEFS_ASSIGN_CT if test -z "${GETDEFS_COMMON_ASSIGN}" then GETDEFS_COMMON_ASSIGN_CT=0 else GETDEFS_COMMON_ASSIGN_CT=1 GETDEFS_COMMON_ASSIGN_1="${GETDEFS_COMMON_ASSIGN}" fi export GETDEFS_COMMON_ASSIGN_CT if test -z "${GETDEFS_COPY}" then GETDEFS_COPY_CT=0 else GETDEFS_COPY_CT=1 GETDEFS_COPY_1="${GETDEFS_COPY}" fi export GETDEFS_COPY_CT GETDEFS_SRCFILE="${GETDEFS_SRCFILE}" GETDEFS_SRCFILE_set=false export GETDEFS_SRCFILE GETDEFS_LINENUM="${GETDEFS_LINENUM}" GETDEFS_LINENUM_set=false export GETDEFS_LINENUM GETDEFS_OUTPUT="${GETDEFS_OUTPUT}" GETDEFS_OUTPUT_set=false export GETDEFS_OUTPUT GETDEFS_AUTOGEN="${GETDEFS_AUTOGEN}" GETDEFS_AUTOGEN_set=false export GETDEFS_AUTOGEN GETDEFS_TEMPLATE="${GETDEFS_TEMPLATE}" GETDEFS_TEMPLATE_set=false export GETDEFS_TEMPLATE if test -z "${GETDEFS_AGARG}" then GETDEFS_AGARG_CT=0 else GETDEFS_AGARG_CT=1 GETDEFS_AGARG_1="${GETDEFS_AGARG}" fi export GETDEFS_AGARG_CT GETDEFS_BASE_NAME="${GETDEFS_BASE_NAME}" GETDEFS_BASE_NAME_set=false export GETDEFS_BASE_NAME OPT_ARG="$1" while [ $# -gt 0 ] do OPT_ELEMENT='' OPT_ARG_VAL='' OPT_ARG="${1}" OPT_CODE=`echo "X${OPT_ARG}"|sed 's/^X-*//'` shift OPT_ARG="$1" case "${OPT_CODE}" in *=* ) OPT_ARG_VAL=`echo "${OPT_CODE}"|sed 's/^[^=]*=//'` OPT_CODE=`echo "${OPT_CODE}"|sed 's/=.*$//'` ;; esac case "${OPT_CODE}" in 'de' | \ 'def' | \ 'defs' | \ 'defs-' | \ 'defs-t' | \ 'defs-to' | \ 'defs-to-' | \ 'defs-to-g' | \ 'defs-to-ge' | \ 'defs-to-get' ) if [ -n "${GETDEFS_DEFS_TO_GET}" ] && ${GETDEFS_DEFS_TO_GET_set} ; then echo Error: duplicate DEFS_TO_GET option >&2 echo "$GETDEFS_USAGE_TEXT" exit 1 ; fi GETDEFS_DEFS_TO_GET_set=true OPT_NAME='DEFS_TO_GET' OPT_ARG_NEEDED=YES ;; 'or' | \ 'ord' | \ 'orde' | \ 'order' | \ 'orderi' | \ 'orderin' | \ 'ordering' ) if [ -n "${GETDEFS_ORDERING}" ] && ${GETDEFS_ORDERING_set} ; then echo Error: duplicate ORDERING option >&2 echo "$GETDEFS_USAGE_TEXT" exit 1 ; fi GETDEFS_ORDERING_set=true OPT_NAME='ORDERING' eval GETDEFS_ORDERING${OPT_ELEMENT}=true export GETDEFS_ORDERING${OPT_ELEMENT} OPT_ARG_NEEDED=OK ;; 'no-o' | \ 'no-or' | \ 'no-ord' | \ 'no-orde' | \ 'no-order' | \ 'no-orderi' | \ 'no-orderin' | \ 'no-ordering' ) if [ -n "${GETDEFS_ORDERING}" ] && ${GETDEFS_ORDERING_set} ; then echo Error: duplicate ORDERING option >&2 echo "$GETDEFS_USAGE_TEXT" exit 1 ; fi GETDEFS_ORDERING_set=true GETDEFS_ORDERING='no' export GETDEFS_ORDERING OPT_NAME='ORDERING' OPT_ARG_NEEDED=NO ;; 'fir' | \ 'firs' | \ 'first' | \ 'first-' | \ 'first-i' | \ 'first-in' | \ 'first-ind' | \ 'first-inde' | \ 'first-index' ) if [ -n "${GETDEFS_FIRST_INDEX}" ] && ${GETDEFS_FIRST_INDEX_set} ; then echo Error: duplicate FIRST_INDEX option >&2 echo "$GETDEFS_USAGE_TEXT" exit 1 ; fi GETDEFS_FIRST_INDEX_set=true OPT_NAME='FIRST_INDEX' OPT_ARG_NEEDED=YES ;; 'in' | \ 'inp' | \ 'inpu' | \ 'input' ) GETDEFS_INPUT_CT=`expr ${GETDEFS_INPUT_CT} + 1` OPT_ELEMENT="_${GETDEFS_INPUT_CT}" OPT_NAME='INPUT' OPT_ARG_NEEDED=YES ;; 'su' | \ 'sub' | \ 'subb' | \ 'subbl' | \ 'subblo' | \ 'subbloc' | \ 'subblock' ) GETDEFS_SUBBLOCK_CT=`expr ${GETDEFS_SUBBLOCK_CT} + 1` OPT_ELEMENT="_${GETDEFS_SUBBLOCK_CT}" OPT_NAME='SUBBLOCK' OPT_ARG_NEEDED=YES ;; 'lis' | \ 'list' | \ 'lista' | \ 'listat' | \ 'listatt' | \ 'listattr' ) GETDEFS_LISTATTR_CT=`expr ${GETDEFS_LISTATTR_CT} + 1` OPT_ELEMENT="_${GETDEFS_LISTATTR_CT}" OPT_NAME='LISTATTR' OPT_ARG_NEEDED=YES ;; 'fil' | \ 'file' | \ 'filel' | \ 'fileli' | \ 'filelis' | \ 'filelist' ) if [ -n "${GETDEFS_FILELIST}" ] && ${GETDEFS_FILELIST_set} ; then echo Error: duplicate FILELIST option >&2 echo "$GETDEFS_USAGE_TEXT" exit 1 ; fi GETDEFS_FILELIST_set=true OPT_NAME='FILELIST' eval GETDEFS_FILELIST${OPT_ELEMENT}=true export GETDEFS_FILELIST${OPT_ELEMENT} OPT_ARG_NEEDED=OK ;; 'as' | \ 'ass' | \ 'assi' | \ 'assig' | \ 'assign' ) GETDEFS_ASSIGN_CT=`expr ${GETDEFS_ASSIGN_CT} + 1` OPT_ELEMENT="_${GETDEFS_ASSIGN_CT}" OPT_NAME='ASSIGN' OPT_ARG_NEEDED=YES ;; 'com' | \ 'comm' | \ 'commo' | \ 'common' | \ 'common-' | \ 'common-a' | \ 'common-as' | \ 'common-ass' | \ 'common-assi' | \ 'common-assig' | \ 'common-assign' ) GETDEFS_COMMON_ASSIGN_CT=`expr ${GETDEFS_COMMON_ASSIGN_CT} + 1` OPT_ELEMENT="_${GETDEFS_COMMON_ASSIGN_CT}" OPT_NAME='COMMON_ASSIGN' OPT_ARG_NEEDED=YES ;; 'cop' | \ 'copy' ) GETDEFS_COPY_CT=`expr ${GETDEFS_COPY_CT} + 1` OPT_ELEMENT="_${GETDEFS_COPY_CT}" OPT_NAME='COPY' OPT_ARG_NEEDED=YES ;; 'sr' | \ 'src' | \ 'srcf' | \ 'srcfi' | \ 'srcfil' | \ 'srcfile' ) if [ -n "${GETDEFS_SRCFILE}" ] && ${GETDEFS_SRCFILE_set} ; then echo Error: duplicate SRCFILE option >&2 echo "$GETDEFS_USAGE_TEXT" exit 1 ; fi GETDEFS_SRCFILE_set=true OPT_NAME='SRCFILE' eval GETDEFS_SRCFILE${OPT_ELEMENT}=true export GETDEFS_SRCFILE${OPT_ELEMENT} OPT_ARG_NEEDED=OK ;; 'lin' | \ 'line' | \ 'linen' | \ 'linenu' | \ 'linenum' ) if [ -n "${GETDEFS_LINENUM}" ] && ${GETDEFS_LINENUM_set} ; then echo Error: duplicate LINENUM option >&2 echo "$GETDEFS_USAGE_TEXT" exit 1 ; fi GETDEFS_LINENUM_set=true OPT_NAME='LINENUM' eval GETDEFS_LINENUM${OPT_ELEMENT}=true export GETDEFS_LINENUM${OPT_ELEMENT} OPT_ARG_NEEDED=OK ;; 'ou' | \ 'out' | \ 'outp' | \ 'outpu' | \ 'output' ) if [ -n "${GETDEFS_OUTPUT}" ] && ${GETDEFS_OUTPUT_set} ; then echo Error: duplicate OUTPUT option >&2 echo "$GETDEFS_USAGE_TEXT" exit 1 ; fi GETDEFS_OUTPUT_set=true OPT_NAME='OUTPUT' OPT_ARG_NEEDED=YES ;; 'au' | \ 'aut' | \ 'auto' | \ 'autog' | \ 'autoge' | \ 'autogen' ) if [ -n "${GETDEFS_AUTOGEN}" ] && ${GETDEFS_AUTOGEN_set} ; then echo Error: duplicate AUTOGEN option >&2 echo "$GETDEFS_USAGE_TEXT" exit 1 ; fi GETDEFS_AUTOGEN_set=true OPT_NAME='AUTOGEN' eval GETDEFS_AUTOGEN${OPT_ELEMENT}=true export GETDEFS_AUTOGEN${OPT_ELEMENT} OPT_ARG_NEEDED=OK ;; 'no-a' | \ 'no-au' | \ 'no-aut' | \ 'no-auto' | \ 'no-autog' | \ 'no-autoge' | \ 'no-autogen' ) if [ -n "${GETDEFS_AUTOGEN}" ] && ${GETDEFS_AUTOGEN_set} ; then echo Error: duplicate AUTOGEN option >&2 echo "$GETDEFS_USAGE_TEXT" exit 1 ; fi GETDEFS_AUTOGEN_set=true GETDEFS_AUTOGEN='no' export GETDEFS_AUTOGEN OPT_NAME='AUTOGEN' OPT_ARG_NEEDED=NO ;; 'te' | \ 'tem' | \ 'temp' | \ 'templ' | \ 'templa' | \ 'templat' | \ 'template' ) if [ -n "${GETDEFS_TEMPLATE}" ] && ${GETDEFS_TEMPLATE_set} ; then echo Error: duplicate TEMPLATE option >&2 echo "$GETDEFS_USAGE_TEXT" exit 1 ; fi GETDEFS_TEMPLATE_set=true OPT_NAME='TEMPLATE' OPT_ARG_NEEDED=YES ;; 'ag' | \ 'aga' | \ 'agar' | \ 'agarg' ) GETDEFS_AGARG_CT=`expr ${GETDEFS_AGARG_CT} + 1` OPT_ELEMENT="_${GETDEFS_AGARG_CT}" OPT_NAME='AGARG' OPT_ARG_NEEDED=YES ;; 'ba' | \ 'bas' | \ 'base' | \ 'base-' | \ 'base-n' | \ 'base-na' | \ 'base-nam' | \ 'base-name' ) if [ -n "${GETDEFS_BASE_NAME}" ] && ${GETDEFS_BASE_NAME_set} ; then echo Error: duplicate BASE_NAME option >&2 echo "$GETDEFS_USAGE_TEXT" exit 1 ; fi GETDEFS_BASE_NAME_set=true OPT_NAME='BASE_NAME' OPT_ARG_NEEDED=YES ;; 've' | \ 'ver' | \ 'vers' | \ 'versi' | \ 'versio' | \ 'version' ) echo "$GETDEFS_LONGUSAGE_TEXT" exit 0 ;; 'he' | \ 'hel' | \ 'help' ) echo "$GETDEFS_LONGUSAGE_TEXT" exit 0 ;; 'mo' | \ 'mor' | \ 'more' | \ 'more-' | \ 'more-h' | \ 'more-he' | \ 'more-hel' | \ 'more-help' ) echo "$GETDEFS_LONGUSAGE_TEXT" | ${PAGER-more} exit 0 ;; 'sa' | \ 'sav' | \ 'save' | \ 'save-' | \ 'save-o' | \ 'save-op' | \ 'save-opt' | \ 'save-opts' ) echo 'Warning: Cannot save options files' >&2 OPT_ARG_NEEDED=OK ;; 'lo' | \ 'loa' | \ 'load' | \ 'load-' | \ 'load-o' | \ 'load-op' | \ 'load-opt' | \ 'load-opts' ) echo 'Warning: Cannot load options files' >&2 OPT_ARG_NEEDED=YES ;; 'no-l' | \ 'no-lo' | \ 'no-loa' | \ 'no-load' | \ 'no-load-' | \ 'no-load-o' | \ 'no-load-op' | \ 'no-load-opt' | \ 'no-load-opts' ) echo 'Warning: Cannot suppress the loading of options files' >&2 OPT_ARG_NEEDED=NO ;; * ) echo Unknown option: "${OPT_CODE}" >&2 echo "$GETDEFS_USAGE_TEXT" exit 1 ;; esac case "${OPT_ARG_NEEDED}" in NO ) OPT_ARG_VAL='' ;; YES ) if [ -z "${OPT_ARG_VAL}" ] then if [ $# -eq 0 ] then echo No argument provided for ${OPT_NAME} option >&2 echo "$GETDEFS_USAGE_TEXT" exit 1 fi OPT_ARG_VAL="${OPT_ARG}" shift OPT_ARG="$1" fi ;; OK ) if [ -z "${OPT_ARG_VAL}" ] && [ $# -gt 0 ] then case "${OPT_ARG}" in -* ) ;; * ) OPT_ARG_VAL="${OPT_ARG}" shift OPT_ARG="$1" ;; esac fi ;; esac if [ -n "${OPT_ARG_VAL}" ] then eval GETDEFS_${OPT_NAME}${OPT_ELEMENT}="'${OPT_ARG_VAL}'" export GETDEFS_${OPT_NAME}${OPT_ELEMENT} fi done unset OPT_PROCESS || : unset OPT_ELEMENT || : unset OPT_ARG || : unset OPT_ARG_NEEDED || : unset OPT_NAME || : unset OPT_CODE || : unset OPT_ARG_VAL || : # # # # # # # # # # # # END OF AUTOMATED OPTION PROCESSING # # # # # # # # # # # -- do not modify this marker -- env | egrep GETDEFS_ |
[ < ] | [ > ] | [ << ] | [ Up ] | [ >> ] | [Top] | [Contents] | [Index] | [ ? ] |
AutoOpts provides two templates for producing `.texi' documentation. `aginfo.tpl' for the invoking section, and `aginfo3.tpl' for describing exported library functions and macros.
For both types of documents, the documentation level is selected by passing a `-DLEVEL=<level-name>' argument to AutoGen when you build the document. (See the example invocation below.)
Two files will be produced, a `.texi' file and a `.menu' file. You should include the `.menu' file in your document where you wish to reference the `invoking' chapter, section or subsection.
The `.texi' file will contain an introductory paragraph, a menu and a subordinate section for the invocation usage and for each documented option. The introductory paragraph is normally the boiler plate text, along the lines of:
This chapter documents the @file{AutoOpts} generated usage text and option meanings for the @file{your-program} program. |
or:
These are the publicly exported procedures from the libname library. Any other functions mentioned in the header file are for the private use of the library. |
7.12.1 "invoking" info docs | ||
7.12.2 library info docs |
[ < ] | [ > ] | [ << ] | [ Up ] | [ >> ] | [Top] | [Contents] | [Index] | [ ? ] |
Using the option definitions for an AutoOpt client program, the `aginfo.tpl' template will produce texinfo text that documents the invocation of your program. The text emitted is designed to be included in the full texinfo document for your product. It is not a stand-alone document. The usage text for the autogen usage help (-?), getdefs usage help and columns usage help (-?) programs, are included in this document and are all generated using this template.
If your program's option definitions include a `prog-info-descrip' section, then that text will replace the boilerplate introductory paragraph.
These files are produced by invoking the following command:
autogen -L ${prefix}/share/autogen -T aginfo.tpl \ -DLEVEL=section your-opts.def |
Where `${prefix}' is the AutoGen installation prefix and `your-opts.def' is the name of your product's option definition file.
[ < ] | [ > ] | [ << ] | [ Up ] | [ >> ] | [Top] | [Contents] | [Index] | [ ? ] |
The `texinfo' doc for libraries is derived from mostly the same
information as is used for producing man pages See section library man pages. The main
difference is that there is only one output file and the individual
functions are referenced from a .texi
menu. There is also
a small difference in the global attributes used:
lib_description | A description of the library. This text appears before the menu. If not provided, the standard boilerplate version will be inserted. | |
see_also | The |
These files are produced by invoking the following commands:
getdefs linenum srcfile template=aginfo3.tpl output=libexport.def \ <source-file-list> autogen -L ${prefix}/share/autogen -DLEVEL=section libexport.def |
Where `${prefix}' is the AutoGen installation prefix and `libexport.def' is some name that suits you.
An example of this can be seen in this document, See section libopts External Procedures.
[ < ] | [ > ] | [ << ] | [ Up ] | [ >> ] | [Top] | [Contents] | [Index] | [ ? ] |
AutoOpts provides two templates for producing man pages. The command (`man1') pages are derived from the options definition file, and the library (`man3') pages are derived from stylized comments (see section Invoking getdefs).
7.13.1 command line man pages | ||
7.13.2 library man pages |
[ < ] | [ > ] | [ << ] | [ Up ] | [ >> ] | [Top] | [Contents] | [Index] | [ ? ] |
Using the option definitions for an AutoOpts client program, the `agman1.tpl' template will produce an nroff document suitable for use as a `man(1)' page document for a command line command. The description section of the document is either the `prog-man-descrip' text, if present, or the `detail' text.
Each option in the option definitions file is fully documented
in its usage. This includes all the information documented
above for each option (see section Option Attributes), plus
the `doc' attribute is appended. Since the `doc'
text is presumed to be designed for texinfo
documentation,
sed
is used to convert some constructs from texi
to nroff
-for-man
-pages. Specifically,
convert @code, @var and @samp into \fB...\fP phrases convert @file into \fI...\fP phrases Remove the '@' prefix from curly braces Indent example regions Delete the example commands Replace `end example' command with ".br" Replace the `@*' command with ".br" |
This document is produced by invoking the following command:
autogen -L ${prefix}/share/autogen -T agman1.tpl options.def |
Where `${prefix}' is the AutoGen installation prefix and `options.def' is the name of your product's option definition file. I do not use this very much, so any feedback or improvements would be greatly appreciated.
[ < ] | [ > ] | [ << ] | [ Up ] | [ >> ] | [Top] | [Contents] | [Index] | [ ? ] |
Two global definitions are required, and then
one library man page is produced for each export_func
definition
that is found. It is generally convenient to place these definitions
as `getdefs' comments (see section Invoking getdefs) near the procedure
definition, but they may also be a separate AutoGen definitions file
(see section Definitions File). Each function will be cross referenced
with their sister functions in a `SEE ALSO' section. A global
see_also
definition will be appended to this cross referencing text.
The two global definitions required are:
library | This is the name of your library, without the `lib' prefix.
The AutoOpts library is named `libopts.so...', so the | |
header | Generally, using a library with a compiled program entails
|
The export_func
definition should contain the following attributes:
name | The name of the procedure the library user may call. | |
what | A brief sentence describing what the procedure does. | |
doc | A detailed description of what the procedure does. It may ramble on for as long as necessary to properly describe it. | |
err | A short description of how errors are handled. | |
ret_type | The data type returned by the procedure.
Omit this for | |
ret_desc | Describe what the returned value is, if needed. | |
private | If specified, the function will not be documented. This is used, for example, to produce external declarations for functions that are not available for public use, but are used in the generated text. | |
arg | This is a compound attribute that contains: |
arg_type | The data type of the argument. | ||
arg_name | A short name for it. | ||
arg_desc | A brief description. |
As a `getdefs' comment, this would appear something like this:
/*=--subblock=arg=arg_type,arg_name,arg_desc =*/ /*=* * library: opts * header: your-opts.h =*/ /*=export_func optionProcess * * what: this is the main option processing routine * arg: + tOptions* + pOpts + program options descriptor + * arg: + int + argc + program arg count + * arg: + char** + argv + program arg vector + * ret_type: int * ret_desc: the count of the arguments processed * * doc: This is what it does. * err: When it can't, it does this. =*/ |
Note the subblock
and library
comments.
subblock
is an embedded `getdefs'
option (see section subblock option) that tells it how to parse the
arg
attribute. The library
and header
entries
are global definitions that apply to all the documented functions.
[ < ] | [ > ] | [ << ] | [ Up ] | [ >> ] | [Top] | [Contents] | [Index] | [ ? ] |
There is now a template named, "getopt.tpl
" that is distributed with
autoopts. With it, you will have another source file generated for you that
will utilize either the standard getopt(3C)
or the GNU
getopt_long(3GNU)
function for parsing the command line arguments.
Which is used is selected by the presence or absence of the long-opts
program attribute. It will save you from being dependent upon the
libopts
library and it produces code ready for
internationalization. However, it also carries with it some limitations on
the use of AutoOpts features:
libopts
library. You are constrained to options that
take "string
" arguments, though you may handle the option
argument with a callback procedure.
SET_OPT_XXX
macros having been defined.
In case the option definition file lives in a different directory.
Any special flags required to compile. This should minimally include
the output from running the autoopts-config cflags
script.
Any special flags required to link. This should minimally include
the output from running the autoopts-config ldflags
script.
Set this only if "cc
" cannot be found in $PATH
(or it is not the one you want).
To use this, set the exported environment variables and then invoke autogen twice, in the following order:
autogen myprog-opts.def autogen -T getopt.tpl myprog-opts.def |
and you will have three new files: `myprog-opts.h', `myprog-opts.c',
and `getopt-progname.c', where "progname" is the name specified with
the global prog-name
attribute in the option definition file.
[ < ] | [ > ] | [ << ] | [ Up ] | [ >> ] | [Top] | [Contents] | [Index] | [ ? ] |
The generated code for AutoOpts will enable and disable the translation of
AutoOpts run time messages. If ENABLE_NLS
is defined at compile time,
then the _()
macro may be used to specify a translation function. If
undefined, it will default to gettext(3GNU)
. This define will also
enable a callback function that optionProcess
invokes at the
beginning of option processing. The AutoOpts libopts
library will
always check for this "compiled with NLS" flag, so libopts
does not
need to be specially compiled. The strings returned by the translation
function will be strdup(3)-ed
and kept. They will not be
re-translated, even if the locale changes, but they will also not be dependent
upon reused or unmappable memory.
To internationalize option processing, you should first internationalize your
program. Then, the option processing strings can be added to your translation
text by processing the AutoOpts-generated `my-opts.c' file and adding the
distributed `po/usage-txt.pot' file. (Also by extracting the strings
yourself from the `usage-txt.h' file.) When you call
optionProcess
, all of the user visible AutoOpts strings will be passed
through the localization procedure established with the _()
preprocessing macro.
[ < ] | [ > ] | [ << ] | [ Up ] | [ >> ] | [Top] | [Contents] | [Index] | [ ? ] |
AutoOpts generates a header file that contains many C preprocessing macros and
several external names. For the most part, they begin with either opt_
or option
, or else they end with _opt
. If this happens to
conflict with other macros you are using, or if you are compiling multiple
option sets in the same compilation unit, the conflicts can be avoided. You
may specify an external name prefix
(see section Program Description Attributes) for
all of the names generated for each set of option definitions.
Among these macros, several take an option name as a macro argument.
Sometimes, this will inconveniently conflict. For example, if you specify an
option named, debug
, the emitted code will presume that DEBUG
is
not a preprocessing name. Or also, if you are building on a Windows platform,
you may find that MicroSoft has usurped a number of user space names in its
header files. Consequently, you will get a preprocessing error if you use,
for example, HAVE_OPT(DEBUG)
or HAVE_OPT(INTERNAL)
(see section HAVE_OPT( <NAME> ) - Have this option?) in your code. You may trigger an obvious warning for such
conflicts by specifying the guard-option-names
attribute
(see section Program Description Attributes). That emitted code will also #undef
-ine
the conflicting name.
[ << ] | [ >> ] | [Top] | [Contents] | [Index] | [ ? ] |
This document was generated by Bruce Korb on September, 30 2006 using texi2html 1.76.