
epsilon
A GNU Manual

for version 0.2.1CVS, 24 January 2004

Luca Saiu

This is the manual documenting GNU epsilon (version 0.2.1CVS, last updated on 24 January
2004).
GNU epsilon is a functional language implementation.
Copyright c© 2002, 2003, 2004 Luca Saiu

Permission is granted to copy, distribute and/or modify this document under the
terms of the GNU Free Documentation License, Version 1.2 or any later version
published by the Free Software Foundation; with the Invariant Sections being “GNU
General Public License”, the Front-Cover texts being (a) (see below), and with the
Back-Cover texts being (b) (see below).
(a) The FSF’s Front-Cover Text is

A GNU Manual
(b) The FSF’s Back-Cover Text is

You have freedom to copy and modify this GNU Manual, like GNU
software.

A copy of the license is included in the section entitled “GNU Free Documentation
License”.

i

Table of Contents

GNU GENERAL PUBLIC LICENSE . 1
Preamble . 1
TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND

MODIFICATION . 1
Appendix: How to Apply These Terms to Your New Programs. 6

Part I - Introduction to epsilon . 7

1 Introduction . 9
1.1 Suggestions, bug-reports and comments . 9
1.2 Audience . 9
1.3 History . 9

2 Functional programming tutorial . 11
2.1 What functional programming is . 11
2.2 Mathematical foundations . 11

2.2.1 Sets . 11
2.2.2 Functions . 11

2.3 Lambda-notation . 12
2.4 A first introduction to recursion . 13
2.5 Introduction to lists . 14
2.6 More on lists: empty, head and tail . 14
2.7 More on recursion . 15

2.7.1 The function last . 15
2.7.2 The function interval . 16
2.7.3 Tail-recursion. 17
2.7.4 Non-termination: the function dontstop . 18

2.8 Differences from imperative programming . 19
2.8.1 No side effects . 19
2.8.2 Recursion instead of loops . 19
2.8.3 No pointers or references . 19
2.8.4 First-class functions . 20
2.8.5 Higher-order . 20
2.8.6 Referential transparency. 20
2.8.7 Type safety . 20
2.8.8 Type inference . 20
2.8.9 Purely functional I/O . 21

2.9 Before going on . 21

ii epsilon 0.2.1CVS

3 epsilon tutorial . 23
3.1 Before starting: a notice . 23
3.2 The interpreter and the compiler . 23
3.3 Using the epsilon interpreter: a first session . 24

3.3.1 Interpreter syntax and epsilon syntax . 24
3.4 Queries and definitions . 25
3.5 Booleans. 25

3.5.1 Logical connectives . 26
3.6 Conditionals: if..then..else . 27
3.7 Temporary variable bindings: let..be..in . 28

3.7.1 Digression: free occurrences and bound occurrences 29
3.7.2 A more formal explaination . 29

3.8 Recursive functions . 30

Part II - Specification. 31

4 Language . 33
4.1 Lexicon . 33

4.1.1 Whitespace . 33
4.1.2 Comments . 33
4.1.3 Identifiers . 33
4.1.4 Numbers . 33
4.1.5 Characters and strings . 33

4.2 Basic types and expressions . 33
4.2.1 The void expression . 33
4.2.2 Integer expressions . 33
4.2.3 Floating-point expressions . 33
4.2.4 Boolean expressions . 33
4.2.5 Character expressions . 33
4.2.6 String expressions. 33
4.2.7 Promise expressions . 33

4.3 Basic constructs . 33
4.3.1 The declare declaring construct . 33
4.3.2 The define naming construct . 33
4.3.3 The if..then..else conditional construct . 33
4.3.4 The let block construct . 34

4.4 Functions . 34
4.4.1 lambda-notation . 34
4.4.2 Functions with more than one argument . 34
4.4.3 Recursion . 34

4.4.3.1 The fix fixpoint operator . 34
4.4.3.2 Mutually-recursive functions . 34

4.5 Higher-order types . 34
4.5.1 Lists . 34
4.5.2 Arrays . 34
4.5.3 Concrete types . 34

4.6 Type inference . 34
4.6.1 Type declarations in function parameters . 34

4.7 Exceptions . 34
4.8 Modules . 34

4.8.1 Abstract types and synonym types . 35
4.9 Polymorphism . 35
4.10 Classes . 35

iii

4.11 Monads . 35
4.12 The epsilon meta-interpreter . 35
4.13 Foreign languages interface . 35

4.13.1 Calling C from epsilon . 35
4.13.2 Calling epsilon from C . 35

5 Library . 37
5.1 Default prelude . 37
5.2 Containers . 37
5.3 Meta-interpreter and meta-compiler. 37
5.4 I/O . 37

5.4.1 Terminal I/O . 37
5.4.2 Curses I/O . 37
5.4.3 Filesystem I/O . 37
5.4.4 Sockets I/O . 37
5.4.5 Graphics I/O with OpenGL . 37
5.4.6 CORBA bindings . 37
5.4.7 Bonobo bindings . 37

6 Tools . 39
6.1 Common command line behavior . 39
6.2 The epsilon interpreter . 39
6.3 The epsilonc compiler . 39
6.4 The eamlas assembler . 40
6.5 The eamld linker . 40
6.6 The eamx2c eAM executable to C compiler . 40
6.7 The eamx2scheme eAM executable to Scheme compiler . 40
6.8 The epsilonlex scanner generator . 40
6.9 The epsilonyacc parser generator . 40

Part III - Internals . 41

7 Internals overview . 43
7.1 Architecture . 43

7.1.1 The epsilonc compiler . 43
7.1.2 The eamlas assembler . 43
7.1.3 The eAM abstract machine . 44
7.1.4 The eamold linker . 44
7.1.5 The eamo2c bytecode-to-C translator . 44
7.1.6 The epsilonlex scanner generator . 44
7.1.7 The epsilonyacc parser generator . 44

7.2 Extending the eAM . 44
7.3 File formats . 44

7.3.1 eAML file format . 44
7.3.2 bytecode object file format . 44
7.3.3 bytecode archive file format. 44

iv epsilon 0.2.1CVS

8 The epsilon Abstract Machine . 45
8.1 eAM types . 45
8.2 Memory model . 46
8.3 Representation of epsilon data in the eAM . 46

8.3.1 integer, character and boolean . 46
8.3.2 float . 47
8.3.3 Tuples . 47
8.3.4 Arrays . 47
8.3.5 Strings . 47
8.3.6 Lists . 47
8.3.7 Objects of concrete types . 47
8.3.8 Objects with behavior . 48

8.3.8.1 Promises . 48
8.3.8.2 Functions . 48
8.3.8.3 Actions . 48

8.3.9 Objects of abstract types . 48
8.3.9.1 Examples . 48

8.4 Runtime support structures . 49
8.5 Subroutines and blocks . 50

8.5.1 Calling conventions with operands in the stack . 50
8.5.2 Calling conventions with operands in the registers 50

8.6 The eAM garbage collector . 50
8.6.1 Homogeneous pages . 50
8.6.2 Large pages . 51
8.6.3 Allocator . 52
8.6.4 Collector . 52

8.6.4.1 Pseudo-generational garbage collection . 53
8.6.5 Safe points . 54

8.7 eAM instructions . 54

9 eAM instructions . 55
9.1 Naming conventions . 55
9.2 Writing conventions for stack and registers configurations . 55
9.3 Writing conventions for structures . 56
9.4 Instructions classification . 56
9.5 Arithmetic/logic instructions on integers . 57

9.5.1 addi $a $b $c . 57
9.5.2 addi_i $a $b n . 57
9.5.3 andi $a $b $c . 57
9.5.4 divi $a $b $c . 57
9.5.5 divi_i $a $b n . 57
9.5.6 f_divi $a $b $c . 57
9.5.7 f_modi $a $b $c . 58
9.5.8 ldci $r n . 58
9.5.9 modi $a $b $c . 58
9.5.10 modi_i $a $b n . 58
9.5.11 muli $a $b $c . 58
9.5.12 muli_i $a $b n . 58
9.5.13 nxori $a $b $c . 58
9.5.14 ori $a $b $c . 59
9.5.15 s_f_divi . 59
9.5.16 s_addi . 59
9.5.17 s_addi_i n . 59

v

9.5.18 s_andi . 59
9.5.19 s_divi . 59
9.5.20 s_divi_i n . 60
9.5.21 s_eqi . 60
9.5.22 s_gti . 60
9.5.23 s_gtei . 60
9.5.24 s_lti . 60
9.5.25 s_ltei . 61
9.5.26 s_modi . 61
9.5.27 s_modi_i n . 61
9.5.28 s_muli . 61
9.5.29 s_muli_i n . 61
9.5.30 s_noti . 62
9.5.31 s_neqi . 62
9.5.32 s_nxori . 62
9.5.33 s_ori . 62
9.5.34 s_subi . 62
9.5.35 s_subi_i n . 63
9.5.36 s_xori . 63
9.5.37 subi $a $b $c . 63
9.5.38 subi_i $a $b n . 63
9.5.39 swp $a $b . 63
9.5.40 xori $a $b $c . 63

9.6 Arithmetic/logic instructions on floats . 63
9.7 Conversion instructions . 64
9.8 Structures management instructions . 64

9.8.1 mka $a $b . 64
9.8.2 mka_i $a n . 64
9.8.3 s_mka . 64
9.8.4 s_mka_i n . 64
9.8.5 cns $a $b $c . 64
9.8.6 s_cns . 64
9.8.7 car $a $b . 64
9.8.8 s_car . 64
9.8.9 cdr $a $b . 64
9.8.10 s_cdr . 64
9.8.11 lkp $a $b $c . 65
9.8.12 lkp_i $a $b n . 65
9.8.13 s_lkp . 65
9.8.14 s_lkp_i n . 65
9.8.15 f_lkp $a $b $c . 65
9.8.16 f_lkp_i $a $b n . 65
9.8.17 s_f_lkp . 65
9.8.18 s_f_lkp_i n . 65
9.8.19 upd $a $b $c . 65
9.8.20 upd_i $a n $b . 65
9.8.21 f_upd $a $b $c . 65
9.8.22 f_upd_i $a n $b . 65
9.8.23 s_upd . 65
9.8.24 s_upd_i n . 65
9.8.25 s_f_upd . 65
9.8.26 s_f_upd_i n . 65

9.9 Stack management instructions . 65
9.9.1 cpy . 66

vi epsilon 0.2.1CVS

9.9.2 grw n . 66
9.9.3 pop . 66
9.9.4 popm n . 66
9.9.5 s_swp . 66
9.9.6 ld $r . 66
9.9.7 st $r . 66

9.10 Flow control instructions . 66
9.10.1 j L: . 66
9.10.2 jnz $r L: . 66
9.10.3 jz $r L: . 66
9.10.4 s_jnz L: . 66
9.10.5 s_jz L: . 66

9.11 Subprograms management instructions . 66
9.11.1 cll n . 66
9.11.2 clltr n . 66
9.11.3 ret $r . 66
9.11.4 s_ret . 66

9.12 Variables management instructions . 67
9.12.1 lcl $r n . 67
9.12.2 s_lcl n . 67
9.12.3 nlcl $r n m . 67
9.12.4 s_nlcl n m . 67

9.13 Input/output instructions . 67
9.14 Exception handling instructions . 67
9.15 Special instructions . 67

9.15.1 ccod S . 67
9.15.2 gc . 67
9.15.3 hlt n . 67
9.15.4 nop . 67

Part IV - Extending epsilon . 69

10 C libraries . 71
10.1 A wrong solution . 71

10.1.1 The right solution . 71

11 Using epsilon with Scheme. 73

Part V - Examples . 75

12 mu-lisp . 77

13 mu-basic. 79

Appendices . 81

Appendix A Copying This Manual . 83
A.1 GNU Free Documentation License . 83

A.1.1 ADDENDUM: How to use this License for your documents 89

Index . 91

GNU GENERAL PUBLIC LICENSE 1

GNU GENERAL PUBLIC LICENSE

Version 2, June 1991
Copyright c© 1989, 1991 Free Software Foundation, Inc.
59 Temple Place - Suite 330, Boston, MA 02111-1307, USA

Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.

Preamble

The licenses for most software are designed to take away your freedom to share and change it.
By contrast, the GNU General Public License is intended to guarantee your freedom to share
and change free software—to make sure the software is free for all its users. This General Public
License applies to most of the Free Software Foundation’s software and to any other program
whose authors commit to using it. (Some other Free Software Foundation software is covered
by the GNU Library General Public License instead.) You can apply it to your programs, too.

When we speak of free software, we are referring to freedom, not price. Our General Public
Licenses are designed to make sure that you have the freedom to distribute copies of free software
(and charge for this service if you wish), that you receive source code or can get it if you want
it, that you can change the software or use pieces of it in new free programs; and that you know
you can do these things.

To protect your rights, we need to make restrictions that forbid anyone to deny you these
rights or to ask you to surrender the rights. These restrictions translate to certain responsibilities
for you if you distribute copies of the software, or if you modify it.

For example, if you distribute copies of such a program, whether gratis or for a fee, you must
give the recipients all the rights that you have. You must make sure that they, too, receive or
can get the source code. And you must show them these terms so they know their rights.

We protect your rights with two steps: (1) copyright the software, and (2) offer you this
license which gives you legal permission to copy, distribute and/or modify the software.

Also, for each author’s protection and ours, we want to make certain that everyone under-
stands that there is no warranty for this free software. If the software is modified by someone
else and passed on, we want its recipients to know that what they have is not the original, so
that any problems introduced by others will not reflect on the original authors’ reputations.

Finally, any free program is threatened constantly by software patents. We wish to avoid the
danger that redistributors of a free program will individually obtain patent licenses, in effect
making the program proprietary. To prevent this, we have made it clear that any patent must
be licensed for everyone’s free use or not licensed at all.

The precise terms and conditions for copying, distribution and modification follow.

TERMS AND CONDITIONS FOR COPYING,
DISTRIBUTION AND MODIFICATION

0. This License applies to any program or other work which contains a notice placed by
the copyright holder saying it may be distributed under the terms of this General Public
License. The “Program”, below, refers to any such program or work, and a “work based
on the Program” means either the Program or any derivative work under copyright law:
that is to say, a work containing the Program or a portion of it, either verbatim or with
modifications and/or translated into another language. (Hereinafter, translation is included
without limitation in the term “modification”.) Each licensee is addressed as “you”.

2 epsilon 0.2.1CVS

Activities other than copying, distribution and modification are not covered by this License;
they are outside its scope. The act of running the Program is not restricted, and the output
from the Program is covered only if its contents constitute a work based on the Program
(independent of having been made by running the Program). Whether that is true depends
on what the Program does.

1. You may copy and distribute verbatim copies of the Program’s source code as you receive
it, in any medium, provided that you conspicuously and appropriately publish on each copy
an appropriate copyright notice and disclaimer of warranty; keep intact all the notices that
refer to this License and to the absence of any warranty; and give any other recipients of
the Program a copy of this License along with the Program.
You may charge a fee for the physical act of transferring a copy, and you may at your option
offer warranty protection in exchange for a fee.

2. You may modify your copy or copies of the Program or any portion of it, thus forming a
work based on the Program, and copy and distribute such modifications or work under the
terms of Section 1 above, provided that you also meet all of these conditions:
a. You must cause the modified files to carry prominent notices stating that you changed

the files and the date of any change.
b. You must cause any work that you distribute or publish, that in whole or in part

contains or is derived from the Program or any part thereof, to be licensed as a whole
at no charge to all third parties under the terms of this License.

c. If the modified program normally reads commands interactively when run, you must
cause it, when started running for such interactive use in the most ordinary way, to
print or display an announcement including an appropriate copyright notice and a
notice that there is no warranty (or else, saying that you provide a warranty) and that
users may redistribute the program under these conditions, and telling the user how to
view a copy of this License. (Exception: if the Program itself is interactive but does
not normally print such an announcement, your work based on the Program is not
required to print an announcement.)

These requirements apply to the modified work as a whole. If identifiable sections of that
work are not derived from the Program, and can be reasonably considered independent
and separate works in themselves, then this License, and its terms, do not apply to those
sections when you distribute them as separate works. But when you distribute the same
sections as part of a whole which is a work based on the Program, the distribution of the
whole must be on the terms of this License, whose permissions for other licensees extend to
the entire whole, and thus to each and every part regardless of who wrote it.
Thus, it is not the intent of this section to claim rights or contest your rights to work
written entirely by you; rather, the intent is to exercise the right to control the distribution
of derivative or collective works based on the Program.
In addition, mere aggregation of another work not based on the Program with the Program
(or with a work based on the Program) on a volume of a storage or distribution medium
does not bring the other work under the scope of this License.

3. You may copy and distribute the Program (or a work based on it, under Section 2) in object
code or executable form under the terms of Sections 1 and 2 above provided that you also
do one of the following:
a. Accompany it with the complete corresponding machine-readable source code, which

must be distributed under the terms of Sections 1 and 2 above on a medium customarily
used for software interchange; or,

b. Accompany it with a written offer, valid for at least three years, to give any third
party, for a charge no more than your cost of physically performing source distribution,

GNU GENERAL PUBLIC LICENSE 3

a complete machine-readable copy of the corresponding source code, to be distributed
under the terms of Sections 1 and 2 above on a medium customarily used for software
interchange; or,

c. Accompany it with the information you received as to the offer to distribute corre-
sponding source code. (This alternative is allowed only for noncommercial distribution
and only if you received the program in object code or executable form with such an
offer, in accord with Subsection b above.)

The source code for a work means the preferred form of the work for making modifications
to it. For an executable work, complete source code means all the source code for all
modules it contains, plus any associated interface definition files, plus the scripts used to
control compilation and installation of the executable. However, as a special exception, the
source code distributed need not include anything that is normally distributed (in either
source or binary form) with the major components (compiler, kernel, and so on) of the
operating system on which the executable runs, unless that component itself accompanies
the executable.
If distribution of executable or object code is made by offering access to copy from a
designated place, then offering equivalent access to copy the source code from the same
place counts as distribution of the source code, even though third parties are not compelled
to copy the source along with the object code.

4. You may not copy, modify, sublicense, or distribute the Program except as expressly pro-
vided under this License. Any attempt otherwise to copy, modify, sublicense or distribute
the Program is void, and will automatically terminate your rights under this License. How-
ever, parties who have received copies, or rights, from you under this License will not have
their licenses terminated so long as such parties remain in full compliance.

5. You are not required to accept this License, since you have not signed it. However, nothing
else grants you permission to modify or distribute the Program or its derivative works.
These actions are prohibited by law if you do not accept this License. Therefore, by modi-
fying or distributing the Program (or any work based on the Program), you indicate your
acceptance of this License to do so, and all its terms and conditions for copying, distributing
or modifying the Program or works based on it.

6. Each time you redistribute the Program (or any work based on the Program), the recipient
automatically receives a license from the original licensor to copy, distribute or modify the
Program subject to these terms and conditions. You may not impose any further restrictions
on the recipients’ exercise of the rights granted herein. You are not responsible for enforcing
compliance by third parties to this License.

7. If, as a consequence of a court judgment or allegation of patent infringement or for any
other reason (not limited to patent issues), conditions are imposed on you (whether by
court order, agreement or otherwise) that contradict the conditions of this License, they do
not excuse you from the conditions of this License. If you cannot distribute so as to satisfy
simultaneously your obligations under this License and any other pertinent obligations,
then as a consequence you may not distribute the Program at all. For example, if a patent
license would not permit royalty-free redistribution of the Program by all those who receive
copies directly or indirectly through you, then the only way you could satisfy both it and
this License would be to refrain entirely from distribution of the Program.
If any portion of this section is held invalid or unenforceable under any particular circum-
stance, the balance of the section is intended to apply and the section as a whole is intended
to apply in other circumstances.
It is not the purpose of this section to induce you to infringe any patents or other property
right claims or to contest validity of any such claims; this section has the sole purpose of
protecting the integrity of the free software distribution system, which is implemented by

4 epsilon 0.2.1CVS

public license practices. Many people have made generous contributions to the wide range
of software distributed through that system in reliance on consistent application of that
system; it is up to the author/donor to decide if he or she is willing to distribute software
through any other system and a licensee cannot impose that choice.

This section is intended to make thoroughly clear what is believed to be a consequence of
the rest of this License.

8. If the distribution and/or use of the Program is restricted in certain countries either by
patents or by copyrighted interfaces, the original copyright holder who places the Program
under this License may add an explicit geographical distribution limitation excluding those
countries, so that distribution is permitted only in or among countries not thus excluded. In
such case, this License incorporates the limitation as if written in the body of this License.

9. The Free Software Foundation may publish revised and/or new versions of the General
Public License from time to time. Such new versions will be similar in spirit to the present
version, but may differ in detail to address new problems or concerns.

Each version is given a distinguishing version number. If the Program specifies a version
number of this License which applies to it and “any later version”, you have the option of
following the terms and conditions either of that version or of any later version published
by the Free Software Foundation. If the Program does not specify a version number of this
License, you may choose any version ever published by the Free Software Foundation.

10. If you wish to incorporate parts of the Program into other free programs whose distribution
conditions are different, write to the author to ask for permission. For software which
is copyrighted by the Free Software Foundation, write to the Free Software Foundation;
we sometimes make exceptions for this. Our decision will be guided by the two goals of
preserving the free status of all derivatives of our free software and of promoting the sharing
and reuse of software generally.

NO WARRANTY

11. BECAUSE THE PROGRAM IS LICENSED FREE OF CHARGE, THERE IS NO WAR-
RANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY APPLICA-
BLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT
HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM “AS IS” WITH-
OUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING,
BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY
AND FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE RISK AS TO THE
QUALITY AND PERFORMANCE OF THE PROGRAM IS WITH YOU. SHOULD THE
PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF ALL NECESSARY
SERVICING, REPAIR OR CORRECTION.

12. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN
WRITING WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MAY
MODIFY AND/OR REDISTRIBUTE THE PROGRAM AS PERMITTED ABOVE, BE
LIABLE TO YOU FOR DAMAGES, INCLUDING ANY GENERAL, SPECIAL, INCI-
DENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OR IN-
ABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF
DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY
YOU OR THIRD PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH
ANY OTHER PROGRAMS), EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN
ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

GNU GENERAL PUBLIC LICENSE 5

END OF TERMS AND CONDITIONS

6 epsilon 0.2.1CVS

Appendix: How to Apply These Terms to Your New Programs

If you develop a new program, and you want it to be of the greatest possible use to the public,
the best way to achieve this is to make it free software which everyone can redistribute and
change under these terms.

To do so, attach the following notices to the program. It is safest to attach them to the start
of each source file to most effectively convey the exclusion of warranty; and each file should have
at least the “copyright” line and a pointer to where the full notice is found.

one line to give the program’s name and a brief idea of what it does.

Copyright (C) yyyy name of author

This program is free software; you can redistribute it and/or modify

it under the terms of the GNU General Public License as published by

the Free Software Foundation; either version 2 of the License, or

(at your option) any later version.

This program is distributed in the hope that it will be useful,

but WITHOUT ANY WARRANTY; without even the implied warranty of

MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the

GNU General Public License for more details.

You should have received a copy of the GNU General Public License

along with this program; if not, write to the Free Software

Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.

Also add information on how to contact you by electronic and paper mail.
If the program is interactive, make it output a short notice like this when it starts in an

interactive mode:
Gnomovision version 69, Copyright (C) 19yy name of author

Gnomovision comes with ABSOLUTELY NO WARRANTY; for details type ‘show w’.

This is free software, and you are welcome to redistribute it

under certain conditions; type ‘show c’ for details.

The hypothetical commands ‘show w’ and ‘show c’ should show the appropriate parts of the
General Public License. Of course, the commands you use may be called something other than
‘show w’ and ‘show c’; they could even be mouse-clicks or menu items—whatever suits your
program.

You should also get your employer (if you work as a programmer) or your school, if any, to
sign a “copyright disclaimer” for the program, if necessary. Here is a sample; alter the names:

Yoyodyne, Inc., hereby disclaims all copyright interest in the program
‘Gnomovision’ (which makes passes at compilers) written by James Hacker.

signature of Ty Coon, 1 April 1989
Ty Coon, President of Vice

This General Public License does not permit incorporating your program into proprietary
programs. If your program is a subroutine library, you may consider it more useful to permit
linking proprietary applications with the library. If this is what you want to do, use the GNU
Library General Public License instead of this License.

Part I - Introduction to epsilon 7

Part I - Introduction to epsilon

8 epsilon 0.2.1CVS

Chapter 1: Introduction 9

1 Introduction

This book is the comprehensive documentation of the epsilon functional programming language,
library and tools.

In this book “epsilon” is always written in lower case, and even indicated as a lower case
“e” in acronyms. This convention and the name of the language itself come from the idea that
epsilon is intended to be a simple language with uniform syntax, easy to learn — which however
does not prevent it from being powerful and expressive.

epsilon is thought to be a production language, useful for writing real applications. It has an
elegant type system, compositional semantics, referential transparency; it will be also easy to
write compilers and interpreters in epsilon. But all these features are intended to help writing
applications, and were not implemented only for the sake of creating a beautiful conceptual
model. Also the default library has its weight, and it will be worked on as much as possible.

epsilon is a young project, and many things still remain to be completed or rewritten. Help
is welcome.

1.1 Suggestions, bug-reports and comments

This book is not finished yet. For any comment, suggestion or correction you can send us a
message using the public mailing list bug-epsilon@gnu.org. Documentation problems are not
unlike bugs, and any input from users aiming to improve the quality of this book is precious.

Please understand that Luca Saiu’s English is not native, and as such it is surely far from
being perfect; any reporting of misspelling, or generally of any mistake, is welcome. You can
use bug-epsilon@gnu.org also for this.

If you need help for using GNU epsilon you can write to help-epsilon@gnu.org.

1.2 Audience

In this book we do not assume any previous knowledge of functional programming, nor of
programming altogether; nonetheless some previous programming experience will ease reading.

The functional programming tutorial explains everything is needed to start, and the following
chapters introduce concepts as they are needed. There should be no forward-references, so
this book can be mostly read sequentially, from beginning to end. Some sections, however,
are primarily meant as reference documentation, and you can safely just skim them in a first
reading, and rewiew them with more attention at the time you actually need them. We are
referring, first of all, to the chapters about Library and Internals.

1.3 History

The epsilon language was born at the end of 2001 as a small programming project (hence
its name: the Greek letter ε is used in mathematics to indicate small constants1), a way to
experiment with the implementation of functional machines. That first implementation was fully
written in C (with flex and Bison), including the compiler. The code could only be executed via
a virtual machine written in C for that purpose, the LVM. The LVM managed memory with a
reference counter, later replaced by the Boehm-Demers garbage collector.

In the winter of 2002, while playing with the language and adding new features the author
Luca Saiu became more and more impressed by the power and expressivity of the functional

1 A late thought: ε is also used to express errors in numerical analysis. Fun.

mailto:bug-epsilon@gnu.org
mailto:bug-epsilon@gnu.org
mailto:help-epsilon@gnu.org

10 epsilon 0.2.1CVS

paradigm and decided to make epsilon a “real” language: many important features were added
at that time, including type inference, polymorphism, modules and abstract types.

Additions from the spring and summer of 2002 are garbage collector support, concrete types
and exceptions. In Autumn 2002 the new abstract machine, the epsilon Abstract Machine or
eAM, was started. The eAM works generating fast C code from the epsilon Abstract Machine
Language (eAML), an intermediate code representation.

In Autumn 2002 Matteo Golfarini joined the project. In this period the eAM, epsilonlex
and the purely functional I/O system were developed.

On 27th December 2002 epsilon was officially approved as part of the GNU Project2. Richard
Stallman asked to enable epsilon to generate also Scheme as target code, so that epsilon can
be used as an extension language for applications supporting GNU Guile3. Scheme generation
from eAML is still at an experimental stage, but works.

The most recent important additions are the peephole optimizer and the eAM garbage col-
lector. The collector works, is fast and reliable, but is not yet incremental and could be made
parallel with relatively little work.

The eAM was essentially completed in Autumn 2003. The epsilonlex scanner-generator
worked and was usable, and the epsilonyacc parser-generator was planned as the next step.
Some new features introduced in late 2003 are C-libraries (a clean an easy way to extend the
eAM with compiled, dynamically-loaeded C code), support for graphics and a library to handle
S-expressions; epsilonlex was rewritten from scratch twice. The third implementation is much
cleaner and faster than the previous ones. It still lacks the frontend, but the backend works
very well. epsilonyacc was initially written for SLR grammars; it worked, but the author was
not satisfied about the implementation, so he started a new rewrite from scratch. This new
version supporting canonical LR(1) grammars is much better than the first one, and is next to
be finished.

The author now plans to push the language towards the direction of Lisp, allowing runtime
generation and execution of epsilon code, but retaining type-safety and the functional style.
This will be the feature making the epsilon language really unique.

On 20th January 2004 around 11pm epsilonyacc bootstrapped4 for the first time, followed
by epsilonlex on 24th January, at 2:30am.

The language was influenced by ML, Haskell and Lisp, and in a minor way by the author’s
favourite imperative languages: Ada, Java, Python, C++, Smalltalk.

2 See http://www.gnu.org for information about the GNU Project.
3 See http://www.gnu.org/software/guile for information about Guile.
4 When we say “bootstrap” dealing with a tool like a scanner generator or a parser generator we mean generating

the scanner or parser for the tool itself.

http://www.gnu.org
http://www.gnu.org/software/guile

Chapter 2: Functional programming tutorial 11

2 Functional programming tutorial

This chapter introduces functional programming, not assuming any previous programming ex-
perience. If you already know functional programming you can just skim it.

2.1 What functional programming is

The functional paradigm is a very high-level programming style. “High-level” means that you
program in an abstract way, “far” from the machine details and “near” your human way of
thinking.

With functional programming you can safely ignore low-level details such as allocating and
freeing memory; there is no need of using pointers or references; no need to know the internal
representation of data structures. And don’t even worry if you don’t understand the above
concepts. You will simply have no need of any such complication for using a functional language
like epsilon.

Simplifying a bit, a program in a functional language is an expression, i.e. a piece of code
which computes some value, and writes it back to you. In fact you can also use a functional
language as a desk calculator. You can simply write 2 + 3 - 1, and get 4 as result.

Of course you can also do much complex things: you can write a program playing chess, or
drawing graphics. You will even be able to write programs which generate other programs and
execute them. Reading this book you will learn, among the other things, why and when this is
useful.

2.2 Mathematical foundations

For understanding the principles of functional programming you need to understand some very
basic mathematical concepts. No advanced algoebra or analysis is needed, and this presentation
will be informal.

2.2.1 Sets

A basic concept involved in most functional languages, including epsilon, is the idea of set. A
set is a collection of homogeneous objects, such as number, words, or even real-world objects
like people, houses, books. You can represent any object you can imagine in some way; the
one thing you must remember is that a set is homogeneous: you choose some related objects to
represent, and you can think of a set containing all of them.

A common example of a set is the set of natural numbers, written as N . It contains all
integer numbers starting from zero: {0, 1, 2,...}
N contains an infinite number of elements.
The set of integer numbers contains all natural numbers and also negative numbers: {..., -3,

-2, -1, 0, 1, 2, 3, ...}
You can find a representation for any object you can think; for example, say you are interested

in representing your collection of books (for brevity let’s assume you only have three):
{Tom Sawyer, Macbeth, Ulysses}
This latest set is finite.
In a programming language, when a given object a belongs to a set A, you say that a has type

A. “Has type” is commonly written as a colon (:). For example, you can write “-27 : integer”,
or “Ulysses : book”. By convention, sets have plural names but types have singular names:
you write 0 : natural, and not 0 : naturals.

12 epsilon 0.2.1CVS

2.2.2 Functions

A function is a relation from some elements in a set A and some elements of a set B1, with one
constraint: for any element a belonging to A, the function must associate it with at most one
element b of B.

If the function f is between the set A and the set B you can say that f maps A into B or
that f is a function from A to B, and write “f : A → B”. It is not a coincidence that we used
the “:” operator; the function f is itself an element of a set, i.e. has a type: the set is the set of
functions mapping A into B.

Functions can be applied, i.e. they can be given an object of type A (called argument or
parameter2); when functions are applied they compute some value of type B as result, and they
finally return it.

For example, the successor3 succ is a function with maps the integer set into the integer
set itself. You can write “succ : integer → integer”, and indeed succ belongs to the set of
functions from integer to integer. Let’s see an example of application: “succ 10” gives as result
11 (you can write “succ : 10 7→ 11”, or “succ 10 = 11”). For applying a function, just write
its argument after it. That’s all.

If a function is undefined on one or more elements, we say it is partial, and if a is an element
which f is undefined on we write “f(a) = ⊥”, or “f : a 7→ ⊥”; read “⊥” as “bottom”. Partial
functions are very common and useful.

Another example: let g be the function which associates a book with its author (for
example, it maps Ulysses into James Joyce). g is from book to author, so we can write
“g : book → author”. Note that the constraint above compels us to associate one book to
at most one author; we cannot use g if we want to describe the relationship between a book and
its authors when they are more than one.

How could we solve this problem? Quite easy: let’s use another function instead of g, say
h, mapping the set of books into the set of sets of authors. For example, h maps The Capital
into the set {Marx, Engels}: the element is mapped into only one element (even if this single
element is a set containing two elements), so the constraint is respected. For the type, we can
write “h : book → set of authors”.

2.3 Lambda-notation

Let’s get back to the succ example. How could we define succ?
A common way of defining functions is the lambda-notation4: we can define the successor

as λ n.n+ 1. This means “if we call n the argument of the function, then the value which the
function computes is n + 1”.

One more example: let’s define the reverse number function5; very simple: the definition
of reverse number is λ x.1/x. Note also that reverse number is a partial function, since it is
undefined on 0.

How can we define a function taking more than one argument? In lambda-notation you can
simply write the arguments sequentially, between the λ and the .; for example, (say this function

1 A and B can also be the same set.
2 Formally there would be some difference between an argument and a parameter, but the difference is not

important in this context. We will use these names interchangeably.
3 The successor of a number n is n + 1; for example the successor of 34 is 35.
4 Since the letter λ does not belong to most standard keysets, epsilon uses the character \ in its place. This

convention was inspired by the language Haskell.
5 reverse number maps 2 into 1/2, 3 into 1/3, etc.

Chapter 2: Functional programming tutorial 13

is called plus) λ xy.x+ y. We can say that plus is a function with two arguments, or that plus
is a function of arity 2.

There is another way to see the question: we could define plus as λ x.λ y.x+ y; with this
definition plus is a function which takes a parameter named x and returns another function
which takes one parameter named y and returns x+ y. This way of defining functions is called
currying6, and we can say that with this new definition plus is curried.

Note that with currying we can only use functions with one argument, without losing gen-
erality: λ x.λ y.x+ y is a function taking only one argument, x; the object returned by the
function is another function, also taking only one argument, y.

Another advantage of currying is the possibility of partial application: for example we can
apply plus to only one argument: (λ x.λ y.x+ y)7 returns the function λ y.7 + y (it’s nothing
so strange, just a function which takes an argument and returns it incremented by 7). Of course
we can also pass two arguments:

(λ x.λ y.x+ y)7 3

returns 10, as expected. Just pay attention to the type:

plus : integer → (integer → integer)

plus is a function which takes an integer and returns a function which takes another integer
and finally returns a third integer.

Curried functions are extensively used in epsilon.

2.4 A first introduction to recursion

Let’s define a more complex function, the factiorial7 function fact.

A way to see the factorial is this: if the argument (we call it n) is 0 then the result is 1, else
the result is n times the factorial of (n− 1). You should convince yourself that this definition is
correct: for example

5! = 5 · 4! = 5 · 4 · 3! = 5 · 4 · 3 · 2! = 5 · 4 · 3 · 2 · 1! = 5 · 4 · 3 · 2 · 1 · 0! = 5 · 4 · 3 · 2 · 1 · 1
Ok, let’s write it in a more formal way: the definition of fact is

λ n . if n = 0 then
1

else
n · (fact (n − 1))

Here is the main point: while defining fact we used fact itself. The technique we used,
defining a function using itself, is called recursion.

Recursion is a very powerful tool; you can define many important and useful recursive func-
tions, from simple ones such as fact to very complex ones.

Another simple example: the identity8 function id, restricted to map integers to integers.

Let’s define id as a recursive function. The idea is this: call the argument n; if n is zero then
the result is zero, else the result is one plus (id (n− 1)).

More formally, id is

6 The name is in honour of Haskell Curry, the mathematician who invented this technique.
7 The factorial of n, written n!, is the product of all natural numbers from 1 to n included. For example

4! = 1 ·2 ·3 ·4 = 24. By definition 0! = 1.
8 The identity function maps an object into itself. An obvious definition is λ n.n

14 epsilon 0.2.1CVS

λ n . if n = 0 then
0

else
1 + (id (n − 1))

You have surely noticed some similarity with fact. In fact this pattern is quite common in
recursive definitions, even if it is surely not the only one.

Before going on with recursion we are going to make a little digression introdcing a funda-
mental data structure (a data structure is an object made of other objects), the list.

2.5 Introduction to lists

A list is a sequence of objects of the same type. In lists order does matter: for example [1;2;3]
is different from [2;1;3].

Formal definition: a list can be the empty list (written []), or the cons9 of an object a and
a list L (written a::L).

Intuitively speaking, consing means adding one element before a list: to obtain the list
[17;-2;32], for example, you can cons 17 and [-2;32], writing 17::[-2;32].

Beware of the types: you can’t, for example, cons a book and a list of integers; you can only
cons a book and a list of books (and obtain another list of books), or an integer and a list of
integers (and obtain another list of integers). The empty list [] poses no type problems: you
can see it as a list of integers, of books, or of any type you need in a given moment10.

An example: you can cons 1 to the empty list:
1::[]

then you may cons 2 to the list you built:
2::1::[]

The list you obtained, 2::1::[], can also be written as [2;1], and the previous one 1::[]
can also be written as [1]; they are commodity abbreviations.

A final note: re-read the definition “a list can be the empty list, or the cons of an object a
and a list L”. You may have noticed that we defined lists using lists: it’s a recursive definition.

2.6 More on lists: empty, head and tail

Other than cons there are three operators for working on lists: they are called empty, head and
tail11. We are now going to describe them in some detail.

empty : (list of τ1) → boolean

You can read τ1 as “any type”12. This is the first time you see the boolean type; it is a very
simple yet important type: the set of booleans is the set containing only the two values true and
false. empty, given a list L as parameter, returns true only if L is the empty list []; if L is not
empty then empty returns false. Two examples: empty [] returns true; empty [1;2] returns
false.

9 The name cons derives from the Lisp language, and is now a universally accepted way of denoting the
“construction” operation inserting an element before a list.

10 This feature is called polymorphism. Polymorphism will be fully discussed later in this book.
11 In the Lisp language (hence by tradition) they are called null, car and cdr, repectively.
12 Here’s one more case of polymorphism.

Chapter 2: Functional programming tutorial 15

head : (list of τ1) → τ1

head, given a list L as parameter, returns the first element of L. It is an error to apply head
to the empty list13. For example, head [-2;450;0;3] returns -2.

Notice that head is a partial function: head :[] 7→ ⊥.
tail : (list of τ1) → list of τ1

tail, given a list L as parameter, returns the the whole list without the first element. It is an
error to apply tail to the empty list14. For example tail [1;2;3] returns [2;3]; tail [17]
returns [] (don’t forget that [17] is the same as 17::[]).

tail is also partial: tail :[] 7→ ⊥.
Always pay attention to types: head takes a list of objects of some type τ1 and returns an

object of the same type τ1; tail takes a list of objects of some type τ1 and returns another list of
objects of the same type τ1. This is very intuitive: for example, if you have a list of numbers and
extract its first element with head, you expect to find a number, and not something different.

2.7 More on recursion

Now we are going to illustrate some important concepts about recursion, analyzing few note-
worthy functions in all their important aspects.

In this section the concept of reduction will be used for the first time. We say that an
expression E “reduces to” an expression F, and we write

E ⇒ F

when computing E leads to compute F, as a single computation step15. For example
3 + (7− 2) ⇒ 3 + 5 ⇒8.
Reductions are a useful mean to express computations.

2.7.1 The function last

We can easily compute the first element of a list using head, but say you want to know which
is the last element of a list; for example, if we pass ["a"; "b"; "c"] to the function (we call it
last), we expect to be given back as result "c".

Always start thinking of the type: last takes as its parameter a list of objects, each having
some type τ1, and returns a single object of the same type τ1; the returned object belongs to
the list, so it must have the same type as the elements of the list.

last : (list of τ1) → τ1

This is a definition of last :
\ x . if empty (tail x) then

head x
else

last (tail x)

We call x the parameter.
There are two cases:

13 Applying head to [] raises an exception. Exceptions are a general and powerful way to deal with errors, and
will be dealt with later in this book.

14 tail [] also raises an exception.
15 The idea of “computation step” is indeed quite subjective. In this book we say “a single computation step”

to mean the minimum computation unit which is interesting in the context. The discussion about reductions
will be informal.

16 epsilon 0.2.1CVS

1. x is a one-element list, i.e. its tail is the empty list:

In this case the first element of x is also the last element of the list: we return head x.

2. x is not a one-element list, i.e. its tail is a non-empty list:

The last element of x is the last element of its tail: we return last (tail x).

Pay attention to the second case: it the list is not one-element (for example say it has three
elements), we return the last of its tail, which in the example is a two-element list: the last of
the two-element list is the last of its tail, which is one-element. The important fact to note is
that the arguments of successive recursive calls are more and more simple: this is very typical
when recurring over data structures16, and a different behaviour is nearly always an indicator
of errors.

Let’s track down how this function works for, say, [45; 43; -4; 35], step by step:

• evaluate last [45; 43; -4; 35]:

is [45; 43; -4; 35] a one-element list? No (we are in case 2), return last [43; -4; 35].

• evaluate last [43; -4; 35]:

is [43; -4; 35] a one-element list? No (we are in case 2), return last [-4; 35].

• evaluate last [-4; 35]:

is [-4; 35] a one-element list? No (we are in case 2), return last [35].

• evaluate last [35]:

is [35] a one-element list? Yes (we are finally in case 1), return head [35], i.e. 35.

“Coming back” to the first function call we have:

last [45; 43; -4; 35] ⇒
last [43; -4; 35] ⇒
last [-4; 35] ⇒
last [35] ⇒
35, which is the value we were expecting.

Notice that in the definition of last it is assumed that the argument is not []: if x is []
then the evaluation of head (tail x) fails. last is a partial function, being it undefined on []:
last :[] 7→ ⊥.

2.7.2 The function interval

Say you want to compute the list of integers from a given value to another given value; for
example, if we pass 1 and 5 to the function, we expect to be given back as result [1; 2; 3; 4;
5]; if the first parameter is greater than the second one, then we expect the empty list []; if
we use the same value x for both parameters we expect [x]. We are going to call this function
interval.

interval takes two integer parameters and returns a list of integers; we write it curried, so
we may think of it as a function taking an integer parameter and returning another function,
which takes another integer parameter and returns a list of integers:

interval : integer → (integer → list of integer)

interval is defined as

16 For example lists as in this case, opposing to, say, naturals. This is not conceptually exact, but the complexity
of a natural number seen as a data structure is not entirely evident.

Chapter 2: Functional programming tutorial 17

\ a . \ b . if a > b then
[]

else
a :: (interval (a + 1) b)

As you could image interval is a (curried) function taking two parameters; we call them a
and b, respectively.

As often happens, there are two cases:
1. Case 1: a is greater than b.

We simply return the empty list, as the definition says.
2. Case 2: a is less than or equal to b.

The list that we are going to return will surely contain a as the first element; the rest of
the list will be the interval from (a + 1) to b; so we cons a to (interval (a + 1) b).

Let’s examine an example of application, say interval 5 7, step by step:
• is 5 greater than 7? No, so we are in the second case, and we return 5 :: (interval (5 +

1) 7).
• Now we need to evaluate (interval (5 + 1) 7), i.e. interval 6 7: is 6 greater than 7?

No, so we are again in the second case: we return 6 :: (interval (6 + 1) 7).
• Evaluate interval (6 + 1) 7, i.e. interval 7 7: is 7 greater than 7? No (it’s equal to it,

not greater than it), so we are in the second case: we return 7 :: interval (7 + 1) 7

• Evaluate interval (7 + 1) 7, i.e. interval 8 7: is 8 greater than 7? Yes, so we are in the
first case: return [].

Now we have evaluated everyhing we needed: “coming back” to the first function call we
have:

interval 5 7 ⇒
5 :: (interval 6 7) ⇒
5 :: (6 :: (interval 7 7)) ⇒
5 :: (6 :: (7 :: (interval 8 7))) ⇒
5 :: (6 :: (7 :: [])), i.e. 5 :: 6 :: 7 :: [],
which can be abbreviated into [5; 6; 7], the value we were expecting to be given.

2.7.3 Tail-recursion

Notice the difference between the evaluation of interval and the evaluation of last : each call to
interval, except for the last one, is expanded to an expression containing another call to itself
among other things (here the expression is the cons of an object and another call to interval).
In last the situation is simpler: each call, except the last one, is simply expanded to another
call, with no other expressions involved which “surround” the recursive call:

interval 1 3 ⇒ 1 :: (interval 2 3) ⇒ ...
last [345; -50; 4555] ⇒ last [-50; 4555] ⇒ ...
Said in another way, you have no need to “keep track” of temporary results when evaluating

a call to last, but you have when evaluating a call to interval : for computing interval 1 3
you need to compute interval 2 3, then cons 1 to it; to compute interval 2 3 you have to
compute interval 3 3 and cons 2 to it, and so on. With interval you have first to compute
temporary values, then to “attach” them with expressions. With last you can simply forget all
the temporary values before the last one; once you have computed them, you will not need them
anymore:

18 epsilon 0.2.1CVS

last [1; 2; 3; 4; 5; 6; 7; 8; 9; 10; 11; 12; 13; 14; 15; 16] ⇒
last [2; 3; 4; 5; 6; 7; 8; 9; 10; 11; 12; 13; 14; 15; 16] ⇒
last [3; 4; 5; 6; 7; 8; 9; 10; 11; 12; 13; 14; 15; 16] ⇒
...
⇒ last [16].
For all these reasons it’s easy to see that last is somehow simpler than interval (apart from the

number of parameters: this is not important in this context). last is said to be a tail-recursive
function, while interval is not17.

We are going to explain more formally what means for a function to be tail-recursive, later
in this book. For this time just an intuitive understanding is enough.

Evaluating a call to a tail-recursive function with a computer is noticeably more efficient than
evaluating a call to a plain recursive function: when using a functional language the programmer
should strive to use tail-recursion whenever possible.

2.7.4 Non-termination: the function dontstop

Let’s examine a recursive function called dontstop, defined in this way:
\ x . dontstop x

epsilon would detect (infer is the most appropriate term) its type as
dontstop : τ1 → τ2,
altough the reason for this may not appear evident yet. The argument x can have any type,

hence the generic type τ1. But what is the type of the object returned by the function? The
answer is that the function never returns, so in a sense the returned object has an unknown
type; and there is no reason to suppose that the returned object has the same type as x, hence
the new type τ2. This may seem counterintuitive now, but there are deep reasons18 (which will
be explained later in this book) not to write, say,

dontstop : τ1 → nothing .
The behaviour of dontstop is quite simple to understand: let’s see it when applied to

[[10; 3]; [2]] (an object with type list of list of integer, which is ok: the parameter
x can have any type, as we have just said):

dontstop [[10; 3]; [2]] ⇒
dontstop [[10; 3]; [2]] ⇒
dontstop [[10; 3]; [2]] ⇒
...,
never stopping. A call to dontstop expands to another call to dontstop, with exactly the

same argument. The fact that the complexity of the argument does not lessens in successive
calls usually indicates that evaluation does not terminate, as in fact happens in this case.

Any expression whose computation is non-terminating is said to diverge. If E diverges you
can write E↑. By constrast, if the evaluation of E terminates at some point then E is said to
converge, and you can write E↓.

dontstop is a partial function, being undefined for at least some values of its argument (in
this case for all the possible values), and the meaning of dontstop can be expressed as λx.⊥;

17 When defined in this form. interval can also be defined in a tail-recursive form, but the definition becomes
somewhat more complicated.

18 These reasons are bound to the type system of epsilon, i.e. the set of rules which govern the typing of
expressions. epsilon supports the Hindley-Milner type system, also used by the languages ML and Haskell.
The enforcing of such rules prevents many programming errors and can also make programs run faster. Details
will be explained later in this book.

Chapter 2: Functional programming tutorial 19

note, however, that here the symbol “⊥” stands for something different from the meaning of
last [], also expressed by “⊥”. Here “bottom” stands for non-termination, in the other case it
stood for error. The actual meaning of an expression including ⊥ will be specified case by case,
when ambiguity can occour.

As a final comment notice that dontstop is a tail-recursive function.
Of course dontstop is illustrative as an example, but such a function should never be needed

in actual programs.

2.8 Differences from imperative programming

This section is aimed to the readers with some experience in imperative programming. If you
are learning to program from this book you can safely skip this part.

2.8.1 No side effects

The most obvious difference between functional languages and imperative languages is that in
functional languages there are no side effects. For example in an imperative language you can
write something like a := 67, or, to increment a variable, a := a + 1. How can we increment a
variable in a functional language? The answer is simply that there is no way ; what is achieved
with side effects in imperative languages must be dealt with in some other way, in most cases
using recursion.

This has some advantages: when you create a variable you give it a value, and you are sure
that the value will never change; in imperative languages, instead, it’s a common mistake to think
a variable has some value, while instead it has been updated, possibly by some procedure you
are not thinking of: this is impossible in a functional language. It’s equally impossible to have
uninitialized variables: you name it, you create it ; there will never be a uninitialized-variable or
null-reference error.

2.8.2 Recursion instead of loops

The absence of loops in functional programmers captures the attention of many programmers
even more than the absence of side effects; however the absence of side effects obviously implies
the absence of loops: iterating means executing some command many times, but what command
are we about to execute? There is no state to change since there are no side effects. You just
keep calling recursive functions and computing values until you reach the one you are interested
in, and finally return it.

Recursion is not inherently more difficult to use than loops, but requires a little adapting to
“think recursively”. Don’t be afraid if you find yourself stuck to think “iteratively” at first: just
try to express the same idea as a recursive function. In many cases, when you have finished,
you will be surprised from the clearness of recursive code with respect to iterative code.

2.8.3 No pointers or references

In a functional language there is no need for pointers or references. Data structures are beau-
tifully expressed without pointers or references19 using abstract and concrete types, which are
very intuitive to define and to use, and not error-prone at all.

19 References (as in Java, or, to a lesser extent, in C++) do not to cause the same problems which pointers cause.
However they are nonetheless error-prone: you can forget initializations by mistake, and in general references
suffer from all the vulnerabilities which are bound to side-effects.

20 epsilon 0.2.1CVS

Concrete and abstract types will be fully dealt with, later in this book.
Semantics20 also gives some more justifications21 to our claims.

2.8.4 First-class functions

In functional languages a function is an first-class object, i.e. an object like any other: you
can compute a function at run time, you can make a function return another function, you can
define a function with no special syntax, you can write an unnamed lambda-expression in the
middle of a bigger expression: for example

2 + ((λ x . x + x) 3)

gives back 8 as result, as expected.
For an example of a function returning a second function, think of any curried function (look

at its type if you don’t understand at first).
This use of functions is natural and simple, but is forbidden in nearly all imperative languages.

2.8.5 Higher-order

In nearly all functional languages functions can have other functions as parameters (we speak
about second order in this case), and the parameters of those functions can be yet other functions
(third order), and so on. If there is no limit to the order of functions then the language is said
to be ω-order22. epsilon is an ω-order language.

You will learn later in this book how higher-order functions are useful to write simple and
compact programs; in many cases you can even use higher-order functions as substitutes for
recursion.

Higher-order functions don’t exist or their use is seriously restricted in imperative languages.

2.8.6 Referential transparency

In functional languages a noteworthy property holds, named referential tranparency : in practical
terms it says that if an expression E has value v, you can replace every occurrence of E with
v in a program, without changing its meaning. This makes programming more clear and less
error-prone and allows the compiler to make some optimizations which would be impossible in
an imperative language.

2.8.7 Type safety

Many functional languages, epsilon included, are strongly typed, i.e. they recognize as invalid
all the programs which contain type errors, such as multiplying an integer and a boolean, at
compile time23. Many type errors are subtle, and in general having the compiler detecting them
is a great help, saving time and frustration.

Most imperative languages allow unsafe use of types, and this may lead to detect errors very
late, even after program release.

20 Semantics is a branch of Computer Science dealing with the formal meaning of computer programs. It’s not
required you know Semantics for using epsilon.

21 Semantics says pointers and references are related with memory, also named store. All side effects are also
operations on stores. In a functional language there is no concept of store and all operations are made only
on environments; imperative programs, by constrast, use both environments and stores. This is a deep reason
why functional programming can be simpler than imperative programming.

22 In mathematics the letter ω is used to indicate the cardinality, i.e. the number of elements, of the set of the
natural numbers N .

23 i.e. before execution.

Chapter 2: Functional programming tutorial 21

2.8.8 Type inference

Some functional languages24, including epsilon, infer types; it’s the compiler to tell the type of
an expression to the programmer, and the programmer is saved from the pain of declaring, say,
the type of every function parameter. The output from the compiler is a mean to verify that
the meaning of the program is really what the programmer intended.

Implementations of imperative languages do not usually provide type inference.

2.8.9 Purely functional I/O

Purely functional languages, including epsilon and Haskell, completely avoid the dangers of
side effects forbidding the user to mix input/output with normal computations, as a way to
preserve referential transparency25. For example, the epsilon compiler refuses to accept code
like 2 + input_integer + 3.

Anyway not all functional languages have these restrictions. ML, for example, has some
imperative features including side effects and I/O in imperative style.

Languages like epsilon and Haskell are said to be purely functional.

2.9 Before going on

This introduction to functional programming, even if brief, may seem too abstract at a first
glance, but as the name functional language suggests the basic mathematical aspects are of
fundamental importance: while programming in epsilon you will be defining recursive functions
with complex types all the time.

If you have not understood at least the basics of types, lists and recursion you should read
again this chapter, paying particular attention.

Of course any suggestion for improving this documentation is welcome, but we deem this
chapter particularly important. You can use the public mailing-list bug-epsilon@gnu.org to
talk with us about these matters. No subscription is needed.

However, don’t be afraid if you still have some doubts; most of the same concepts which were
outlined here will be presented in practical terms in the next chapter.

24 ML and Haskell are important exemples.
25 Other referentially transparent solutions exist in the functional world, such as linear types; however we decided

to implement the I/O system following the lesson of Haskell, which in our opinion employs the most clean
and usable way to make safe I/O.

mailto:bug-epsilon@gnu.org

22 epsilon 0.2.1CVS

Chapter 3: epsilon tutorial 23

3 epsilon tutorial

In this chapter you are going to learn the basics of the epsilon language by using the tools
yourself.

3.1 Before starting: a notice

We are now assuming that the epsilon meta-interpreter is already implemented and working.
This is not yet true, but you can use the temporary quick-and-dirty REPL1 in the meantime.

You can invoke the temporary REPL simply typing epsilon.
In the same way, in this chapter we purposefully ignore the bytecode interpreter eVM, which

is likely to disappear in the future, when the interpreter is ready.

3.2 The interpreter and the compiler

An epsilon program can be run using one of two distinct tools, which are useful in different
situations:

the interactive interpreter
The interpreter2 can be used as an interactive program: you type a small piece of
epsilon code, the code is promptly executed and the result is shown back to you on
the screen; then you can start again: write some more code, execute it, look at the
result, and so on.
When used in the way explained above, the interpreter is said to act as a REPL,
i.e. “Read-Eval-Print Loop”: it reads a piece of code, evaluates (executes) it, prints
back the result and starts again.
This way of working is very comfortable when you are developing a new program:
it makes easy to write some code, to test it soon, and to fix it soon if some error is
found. There is a drawback, however: the code runs slowly and uses much memory.

the compiler
The compiler is a non-interactive program: you write your epsilon code in one or
more files using an editor such as GNU Emacs, and you invoke the compiler which
translates the files into a form which is directly executable on your computer. Then
you can execute the translated program.
Using the compiler you use an “Edit-Compile-Run Loop”3 approach. Note that it
is not a program to “loop”, it’s you; it’s you who must manually edit the files, save
them, compile them, wait for the translation to finish, and execute the translated
program.
The advantage of this approach is the high speed and efficiency of the translated
code. Its drawbacks are the slowness of the translation, and the general clumsiness

1 The REPL, (Read-Eval-Print Loop), is a simple C program which takes an epsilon expression, compiles it into
bytecode, and runs it on the eVM (epsilon Virtual Machine). The REPL as it is now has some serious flaws,
and can not execute all the code which the compiler can run. You can always use the compiler instead of the
REPL, at the cost of some additional complications. In the rest of this chapter we assume you are using the
interpreter, which when it’s ready will behave much like the current REPL.

2 The interpreter is also called meta-interpreter, or meta-circular interpreter. This means that the interpreter
was written in the same language it implements: in this case the epsilon interpreter itself was written in
epsilon.

3 Often called “Edit-Compile-Debug Loop”, since it’s very uncommon to write a nontrivial program which
works without errors the first time.

24 epsilon 0.2.1CVS

of the approach. The compiler is the right tool to use when you have finished writing
and testing a program which works well, and want it to run fast.

A program run with the interpreter (interpreted) or translated by the compiler (compiled)
behaves identically: only speed and memory use are different. You have not to worry about
compatibility, since the interpreter and the compiler support the exact same language.

The interpreter is also better suited to learn the language and experiment. In the rest of this
chapter we are going to assume you use the epsilon interpeter.

3.3 Using the epsilon interpreter: a first session

Try starting the interactive interpreter: at the command prompt of your system, type
epsilon

The interpreter will show a banner similar to

i ll

eeeeee l version 0.2.1CVS

ee p pppp ssss ii l oooo n nnnn

eeee p p s i l o o nn n

ee p p sses i l o o n n

ee p p s i l o o n n

eeeeee ppppp sses iii lll oooo n n

p

p http://www.gnu.org/software/epsilon

ppp

GNU epsilon 0.2.1CVS, Copyright (C) 2002, 2003 Luca Saiu

GNU epsilon comes with ABSOLUTELY NO WARRANTY; for details type ‘:no-warranty’.

This is free software, and you are welcome to redistribute it under certain

conditions; type ‘:license’ for details.

Welcome to the epsilon meta-interpreter.

Type :? for help.

1 >

The prompt ‘>’ followed by a blinking cursor means that the interpreter is ready to accept
your code; now try typing

2 + 2;

(remember the trailing semicolon), and pushing 〈Enter〉. The interpreter will answer
- : integer

4

1 >

The first line means that the expression you entered, indicated by ‘-’, has integer type. The
second line shows the computed value, which, as you were expecting, is 4. The third line is a
new prompt; the interpreter is ready to accept more code.

For exiting the interpreter, type
:quit

(note the leading colon, and the absence of a trailing semicolon) and push 〈Enter〉 at the
prompt. Another way to exit the interpreter is by pressing 〈Ctrl〉-〈D〉.

3.3.1 Interpreter syntax and epsilon syntax

Pay attention to the syntax: :quit, :help and :license are commands directed to the inter-
preter itself, in the sense that they don’t deal with your epsilon program. Interpreter commands

Chapter 3: epsilon tutorial 25

need a leading ‘:’ and no trailing ‘;’. Expressions such as ‘2 + 2;’, instead, are part of the
epsilon syntax. They need no leading ‘:’ and they do need a trailing ‘;’.

3.4 Queries and definitions

Now start the interpreter again, typing epsilon at the command prompt of your system.

Try making some computations with integers; parentheses are used to group subexpressions
to be computed before, as in arithmetic. The ’times’ symbol is written as an asterisk (‘*’), the
’divided’ symbol is written as a slash (‘/’).

1> (2 + 6) * 2 / 4;

- : integer

4

You can try other more complex expressions if you like.

The expression above was a query : you asked the interpreter to evaluate an expression for
you, and you were interested in the result. Queries are a common way, among the rest, to test a
function you wrote, supplying a value and verifying the result is what you are expecting. Let’s
now show how to define a function, starting from a very simple one.

Say you want to define a function adding 3 to its only (integer) argument: you learnt in the
previous chapter that such a function is written as λ x.x+ 3. Since the letter λ is usually not
present on keyboards, epsilon uses the backslash (‘\’) character instead of it. So try entering

\ x . x + 3;

What you get as an answer is
- : integer -> integer

<function>

which maybe is not what you were expecting. Let’s examine the answer of the interpreter:
the first line says that the expression you entered has type integer → integer , which is right;
the second one says that the value of your expression is a function; often doesn’t make much
sense to write them: they are usually complex and not very useful as output from the interpreter
(they are useful as input for it). Hence the interpreter just writes ‘<function>’ when the result
of your computation is a function. And indeed it is, in this case.

The problem is that you wrote a function, but it still was a query. For a definition there is
need for a different syntax. Of course this syntax exists, and it is very simple: just write, for
this same example,

define f = \ x . x + 3;

The interpreter answers saying just
f : integer -> integer

Now you have given your function the name f (you could have used any different name, of
course). You can now use your function f in queries and in other definitions: try

f 10;

The result is 13, as you expected.

We have shown examples of function definitions, and indeed that is the most common case,
but you can make definitions for objects of any type, not necessarily functions. The following
example shows several non-function definitions:

define twenty = (\ x . x * 2) 10;

define forty = twenty + twenty;

define this_is_a_string = "Hello, world!";

define pi = 3.14159265358979323846264338327;

define empty_list = [];

26 epsilon 0.2.1CVS

3.5 Booleans

As we already said in Chapter 2 [Functional programming tutorial], page 11, a boolean value
(also called truth value) is either true or false. Booleans are useful in a wide range of contexts.
One of the most simple is in a query comparing two objects: “is 1 less than 2?”

1 < 2;

- : boolean

true

A slightly more complex query (note that ‘>=’ stands for ‘≥’, and ‘<=’ stands for ‘≤’):
(f 1) >= (f 2);

- : boolean

false

You can always think of reductions if this helps you:
(f 1) >= (f 2) ⇒
((\ x . x + 3) 1) >= ((\ x . x + 3) 2) ⇒
(1 + 3) >= (2 + 3) ⇒
4 >= 5 ⇒
false
You can also directly use the constants true and false: try writing the trivial query

true;

The interpreter will answer
- : boolean

true

3.5.1 Logical connectives

You can use the usual logical connectives ¬, ∧, ∨ and ⊕ with boolean expressions. You can
read them as “not”, “and”, “or” and “xor”, respectively, and they are written in epsilon using
these same names: not, and, or, xor. “∨” is also called “inclusive or”, and “⊕” is also called
“exclusive or”.

Let us explain the meaning of boolean connectives, where e, e1 and e2 are epsilon expressions
with boolean type. The result has always boolean type, too.

The meaning of logical connectives is:
• ¬e ⇒ true if and only if e ⇒ false
• e1 ∧ e2 ⇒ true if and only if e1 ⇒ true and e2 ⇒ true
• e1 ∨ e2 ⇒ true if and only if e1 ⇒ true or e2 ⇒ true, or both
• e1 ⊕ e2 ⇒ true if and only if one of the following two statements holds:
− e1 ⇒ true and e2 ⇒ false
− e1 ⇒ false and e2 ⇒ true

(or, said in a different way, if and only if e1 and e2 reduce to different truth values).

As we said above, boolean connectives applied to boolean objects yield other boolean objects,
so they can be combined to form boolean expressions of any complexity. Try the following query
with the interpreter:

(true and (not not false)) xor ((1 < 2) or false);

The result is true. Let us show why:
(true and (not not false)) xor ((1 < 2) or false) ⇒
(true and (not true)) xor (true or false) ⇒

Chapter 3: epsilon tutorial 27

(true and false) xor true ⇒
false xor true ⇒
true,

which is to say that reductions apply to boolean expression as to any other type of expression.

Here are some more sample queries; try computing them in your mind or with paper and
pencil using reductions before using the interpreter:

true and (true or false);

(1 < 2) xor false;

not ((20 < 22) and true);

3.6 Conditionals: if..then..else

In the examples of Chapter 2 [Functional programming tutorial], page 11 we used the conditional
operator if..then..else several times, without explaining the details.

The syntax is

if guard then expression1 else expression2

where guard, expression1 and expression2 are epsilon expressions. There are two con-
straints:

• guard must have boolean type; said in a more formal way
− guard : boolean

• expression1 and expression2 must have the same type, which can be any type. Formally,
− expression1 : τ1

− expression2 : τ1

The intuitive meaning is: evaluate guard; then, if it reduces to true then reduce the whole
if..then..else expression to expression1, else if it reduces to false then reduce the whole
if..then..else expression to expression2. Said more formally:

• if guard ⇒ true then
(if guard then expression1 else expression2) ⇒ expression1

• if guard ⇒ false then
(if guard then expression1 else expression2) ⇒ expression2

• if guard↑ then4

(if guard then expression1 else expression2)↑

Some brief comments about the type constraints:

The first constraint is obvious5: for deciding between two options you need a boolean: any
other type (integer, string, list, etc.) would not be the right thing.

To understand the second constraint, try entering the query
if 1 < 2 then 1.0 else "abc";

This will lead to an error, since the second constraint was violated: 1.0 and "abc" have
different types (float and string, respectively). This is reasonable: in an actual program it

4 If guard↑ then we will never be able to choose between the then branch and the else branch: we will keep
evaluating the guard for ever, without ever evaluating either branch.

5 Even if it is absent in some languages such as Lisp and C; however nowadays it is widely known that such
absence of type constraints can lead to many programming errors.

28 epsilon 0.2.1CVS

would be very difficult6 to do something reasonable if the two branches (the “then branch” and
the “else branch”) have different types; and thare are also other reasons: which type would
you give to the expression \ x . if x then 1.0 else "abc"? You would not be able to decide
between boolean → float and boolean → string.

An example: the function monus is somewhat famous: it takes two numbers x and y, and
returns x - y if it is not negative, else returns 0. Let’s see a definition:

define monus = \ x . \ y .

if x - y >= 0 then

x - y

else

0;

Try calling monus:
monus 10 12;

- : integer

0

monus 12 (5 + 5);

- : integer

2

A final note for imperative programmers: if you know imperative programming, you might
ask whether an if..then operator, without else, exists. The answer is a strong no: in a
functional language an expression must always be reduceable to something: it is not acceptable
to say “if a is less than b then 10”; and if a is not less than b, what are we going to return? An
explicit else branch is always needed.

3.7 Temporary variable bindings: let..be..in

In many cases it is useful to have an “abbreviation” for a given subexpression, which is used
more than once. For example, say you want to compute

25 + 35 + 45 + 55.

A way to compute it with a query is:
2 * 2 * 2 * 2 * 2 + 3 * 3 * 3 * 3 * 3 + 4 * 4 * 4 * 4 * 4 + 5 * 5 * 5 * 5 * 5;

The above expression is perfectly good for the interpreter, but not very readable by humans.
The let construct allows you to write, instead,

let f be

\ x . x * x * x * x * x

in

(f 2) + (f 3) + (f 4) + (f 5);

The meaning is quite intuitive: the name f is temporarily used for (bound to is the correct
term) a function which takes a number x and returns x5; this name occours four times in
the following code (said the body of the let expression), as a placeholder for the function
(λ x . x · x · x · x · x). Out of the let expression, this association of a value to the name f
(this binding of f) is not visible.

If you expand the body replacing every occurrence of f with the value which is bound to
it, you obtain an equivalent expression: in fact the whole query above has exactly the same
meaning of

6 Some dynamically-typed languages such as Lisp do permit having different types in the then and else

branches; however this lack of compile-time checking makes programming errors very frequent. It’s rare
to actually need such a feature, and when it is really needed it can be easily simulated in epsilon via concrete
types. Concrete types will be explained later in this book.

Chapter 3: epsilon tutorial 29

((\ x . x * x * x * x * x) 2) +

((\ x . x * x * x * x * x) 3) +

((\ x . x * x * x * x * x) 4) +

((\ x . x * x * x * x * x) 5);

This expansion shows how much let can make programs more readable.
As a side note, writing a * a * ... * a (with a occourring b times) is not the most clever

way to compute ab. The right way is using the power operator ‘**’, which allows to simply write
a ** b. We did not do so above just because using ‘**’ was not convenient for us to illustrate
the let construct: we needed some more “visual clutter”.

To do: syntax (single binding), intuitive semantics, more examples, multiple binding

3.7.1 Digression: free occurrences and bound occurrences

To do: move this part to the beginning of this part, with a more precise explaination substitu-
tions and reductions.

A free occurrence of a variable is an occurrence of the variable which does not refer to an
inner λ or let. An occurrence which is not free is called bound.

For example, if we replace the free occurrences of x with 100 in
x + ((\ x . x + 1) (x + let x be 1 in (x + y)))

we obtain
100 + ((\ x . x + 1) (100 + let x be 1 in (x + y)))

Explaination:
• The first x is free.
• The x in x + 1 is bound by the inner ‘\ x .’.
• The x in x + let ... is free.
• The x in (x + y) is bound by the inner ‘let x be’.

Free occurrences were briefly introduced here since they will be needed once in the next
subsection. This same topic will be covered at length later in this book.

3.7.2 A more formal explaination

A first approximation7 of the syntax of a let expression is
let variable1 be expression1 in expression2

Here is the intuitive semantics: the subexpression expression2 typically contains one or
more occurrences of variable1, even if this is not required; every free occurrence of variable1 in
expression2 is replaced by the value which expression1 reduces to, and the whole let expression
reduces to the modified expression2.

More formally:
• If expression1↑ then (let variable1 be expression1 in expression2)↑.
• Else expression1↓, and expression1 ⇒ y ; (let variable1 be expression1 in expression2)
⇒ expression3, where expression3 is obtained from expression2 replacing every free oc-
currence of variable1 with y.

An example: let’s show the evaluation of let x be 1 + 2 in x + x - 1.
• First see what expression1 (here 1 + 2) reduces to: 1 + 2 ⇒ 3. Ok, expression1↓.

7 This first description does not cover the “multiple let”, so it is not the complete syntax. It will be explained
later.

30 epsilon 0.2.1CVS

• Replace the free occurrences of variable1 (here x) in expression2 (here x + x - 1) with the
value we have just computed (here 3): 3 + 3 - 1.

• The whole let expression reduces to what we have just computed: let x be 1 + 2 in x +
x - 1 ⇒ 3 + 3 - 1

• Reduce again until possible: 3 + 3 - 1 ⇒ 6 - 1 ⇒ 5

To do: computability: let is not needed for Turing-completeness

3.8 Recursive functions

We are now going to define the factorial function with the epsilon interpreter. The definition,
as we already said in Chapter 2 [Functional programming tutorial], page 11, is

λ n . if n = 0 then 1 else n · (fact (n - 1))
To do

Part II - Specification 31

Part II - Specification

In this part we give a complete and formal description of the epsilon language, of its library and
tools.

Some notions of Semantics and Languages would help to understand the mathematical parts,
but they are not essential.

This is essentially reference material: feel free to skim it at a first reading.

32 epsilon 0.2.1CVS

Chapter 4: Language 33

4 Language

4.1 Lexicon

4.1.1 Whitespace

4.1.2 Comments

4.1.3 Identifiers

4.1.4 Numbers

4.1.5 Characters and strings

4.2 Basic types and expressions

4.2.1 The void expression

4.2.2 Integer expressions

4.2.3 Floating-point expressions

4.2.4 Boolean expressions

4.2.5 Character expressions

4.2.6 String expressions

4.2.7 Promise expressions

34 epsilon 0.2.1CVS

4.3 Basic constructs

4.3.1 The declare declaring construct

4.3.2 The define naming construct

4.3.3 The if..then..else conditional construct

4.3.4 The let block construct

4.4 Functions

4.4.1 lambda-notation

4.4.2 Functions with more than one argument

4.4.3 Recursion

4.4.3.1 The fix fixpoint operator

4.4.3.2 Mutually-recursive functions

4.5 Higher-order types

4.5.1 Lists

4.5.2 Arrays

4.5.3 Concrete types

4.6 Type inference

4.6.1 Type declarations in function parameters

Chapter 4: Language 35

4.7 Exceptions

4.8 Modules

4.8.1 Abstract types and synonym types

4.9 Polymorphism

4.10 Classes

4.11 Monads

4.12 The epsilon meta-interpreter

4.13 Foreign languages interface

4.13.1 Calling C from epsilon

4.13.2 Calling epsilon from C

36 epsilon 0.2.1CVS

Chapter 5: Library 37

5 Library

5.1 Default prelude

5.2 Containers

5.3 Meta-interpreter and meta-compiler

5.4 I/O

5.4.1 Terminal I/O

5.4.2 Curses I/O

5.4.3 Filesystem I/O

5.4.4 Sockets I/O

5.4.5 Graphics I/O with OpenGL

5.4.6 CORBA bindings

5.4.7 Bonobo bindings

38 epsilon 0.2.1CVS

Chapter 6: Tools 39

6 Tools

6.1 Common command line behavior

The programs in the epsilon distribution, like all the other GNU programs, accept the following
two options:

‘--help’
‘-?’ Writes short usage information to the standard output and exits with success with-

out executing.

‘--version’
‘-V’ Writes program version and short license information to the standard output, and

exits with success without executing.

Every option in the long form ‘--XXXX ’ has also the negative form ‘--no-XXXX ’, which does
the opposite.

6.2 The epsilon interpreter

6.3 The epsilonc compiler

To do: non-option parameters
The epsilonc compiler translates epsilon modules source files into eAML. By default it also

calls the eamlas assembler, the eamld linker, the eamx2c C code generator, and finally the
system C compiler to generate a full native executable program.

If any of the intermediate pass fails the compiler writes an error message to the standard
error and exits with failure.

The default behavior is all that is needed in simple cases; for more complex program it’s
conventient to direct epsilonc via command-line options to stop after any stage of compilation,
allowing the user to manually call the other translators.

The program accepts the options described below.

‘--verbose’
‘-v’ Makes the program verbose while executing; in particular it makes the program

output the current compilation phase which is going to be executed to the standard
error.

‘--show-types’
‘-t’ Makes the program write the inferred types of all the objects that are defined, and

the definitions of user-defined types. It’s a useful feedback allowing the programmer
to check for correctness.
This option is on by default.

‘--unescaped-string’
‘-s’ Makes the generated program program write the strings and characters contained

in the result of the evaluation of the main expression without quoting and without
escapes. For example, if the main expression were "ab\ncd" the generated program
would print ‘ab’, a newline character and ‘cd’, without surrounding double quotes.

‘--generate-eaml’
‘-S’ Stops before the assembling phase.

40 epsilon 0.2.1CVS

‘--generate-eamo’
‘-c’ Stops before the linking phase.

‘--generate-eamx’
‘-x’ Stops before the C code generation phase.

‘--generate-eama’
‘-a’ Generates a library containing the compiled modules instead of making an eAM

executable file, then stop.

‘--generate-c’
‘-C’ Stops before the native code generation phase executed by the system C compiler.

‘--generate-scheme’
Generates Scheme code instead of C code from the eAM executable file, then stop;
Scheme code does not normally need to be compiled.

‘--cc-options=XXXX ’
Passes the additional options XXXX to the C compiler when compiling the gener-
ated C code.

‘--main=XXXX ’
‘-m XXXX ’ Specifies the name of the main module. Note that this is a module name, and not

a file name, so it can not have extension.

‘--output=XXXX ’
‘-o XXXX ’ Specifies the name of the output file, i.e. the one generated in the last phase; the

extension must be in accord with the type of the file generated.

6.4 The eamlas assembler

6.5 The eamld linker

6.6 The eamx2c eAM executable to C compiler

6.7 The eamx2scheme eAM executable to Scheme compiler

6.8 The epsilonlex scanner generator

6.9 The epsilonyacc parser generator

Part III - Internals 41

Part III - Internals

This part contains a detailed description of the implementation of epsilon.
It is of no particular utility for simple users of epsilon, except for who wants to have a deep

feeling of how things work “below”. It’s very important, instead, for programmers who want to
modify epsilon to extend it or to re-use a part of its code for some other purpose1.

The chapters of this part have somewhat stronger requisites than the rest of the book:
proficiency with compiler and run-time support design, C, flex, Bison, bash and Scheme is
required to fully understand the sources. Also some notions of operating systems would help.

1 Remember that epsilon is free software (“free” in the sense of “free speech”: see http://www.gnu.org) covered
by the GNU General Public License. See [Copying], page 1 for the full text.

http://www.gnu.org

42 epsilon 0.2.1CVS

Chapter 7: Internals overview 43

7 Internals overview

This chapter describes the implementation of epsilon, how it was written the way it is and why.

7.1 Architecture

As any nontrivial software project, epsilon is structured in layers.
To do: talk about the REPL
At the top level there is the compiler, translating a module written in epsilon into a lower-

level form. This form is called eAML, for “epsilon Abstract Machine Language”. The compiler
outputs a textual form of the eAML language, relatively easy to read for humans. This helps
the developer of epsilon to test and debug the compiler, and also allows to write code directly
in eAML. The eAML language is quite low-level and resembles an assembly language. It is an
imperative language, making explicit the control flow, the ordering of the computations and the
environment management.

Under the compiler there is the second component, the assembler, translating an eAML
module from the textual form into a binary form called bytecode object file, so that the computer
can deal with eAML in a more efficient way. Instructions are translated one by one with no
important modifications. It’s simply a change of format.

The linker takes several bytecode object files (normally each one derives form an epsilon
source module) and links them into a single larger bytecode object file; this is necessary since
the lower part of the system can only deal with one bytecode object at the time. The linker
can also read or write a bytecode archive file, which is a library of bytecode object files, tipically
with some external references not yet resolved.

The bottom part of the system, called the epsilon Abstract Machine or eAM, supports ex-
ecution via one more tranlation pass: the bytecode-to-C translator compiles a bytecode object
file into a C source program, to be compiled by an optimizing C compiler into native machine
code, and finally executed. The drawback of this approach is the delay due to the compilation
of optimized C code (the delay of bytecode-to-C translation is negligible), but the runtime speed
of the generated code should be very high.

7.1.1 The epsilonc compiler

To do: I need to rewrite the compiler in epsilon, and to document it.

7.1.2 The eamlas assembler

The eamlas assembler is a simple single-pass translator with backpatching, written in C with
flex and Bison.

A few words about source file organization before starting: the assembler source files are in
the eam/ subdirectory. For each category of instructions with the same format (e.g. with an
integer parameters, or with no parameters, or with a label parameter) there is a subdirectory
under eam/c_instructions/, containing the code for the instructions, one instruction per file.
For example, the code for s_nlcl instruction, having two integer parameters, is in the file
eam/c_instructions/integer_integer/s_nlcl.

To ease the developing of epsilon and to provide a better structuring, the source files eamlas.l
and eamlas.y are not written by hand; instead they are automatically generated by the bash
scripts make_eamlas_l and make_eamlas_y. The scripts scan the instructions/ subdirectories
to find the opcodes of all the instructions and to divide them into categories after the format of

44 epsilon 0.2.1CVS

parameters. The division into categories is useful while generating the frontend files eamlas.l
and eamlas.y. The advantage of this approach is evident: to add, remove or rename an instruc-
tion it is sufficient to work only on the single file for that instruction: the assembler (together
with the other low-level parts of the system) is updated automatically.

The output of the bytecode in written into the file using the module bytecode.c (also used
by other parts of the system).

Other than bytecode.c, nothing more than the generated eamlas.l and eamlas.y is needed;
the main logic is in eamlas.y: just a single scan in which all the found instructions are memoized,
and all labels uses and definitions are stored in a data structure (essentially an hash table). At
the end of the parsing all label references are resolved with a backpatch, and the output file is
finally written.

7.1.3 The eAM abstract machine

The epsilon Abstract Machine is relatively complex, and deserves a whole chapter. See Chapter 8
[The epsilon Abstract Machine], page 45.

7.1.4 The eamold linker

To do: write the linker and document it

7.1.5 The eamo2c bytecode-to-C translator

To do: document eamo2c internals

7.1.6 The epsilonlex scanner generator

7.1.7 The epsilonyacc parser generator

7.2 Extending the eAM

To do: talk about how to create new eAM instructions.

7.3 File formats

7.3.1 eAML file format

7.3.2 bytecode object file format

7.3.3 bytecode archive file format

Chapter 8: The epsilon Abstract Machine 45

8 The epsilon Abstract Machine

The epsilon Abstract Machine, or eAM, is a model of the operations involved in the execution
of epsilon programs.

The eAM is imperative and, at the time of this writing, sequential ; many functional properties
of the epsilon language such as referential transparency and indipendency from evaluation order
are lost in the translation from epsilon to eAML.

The eAM is relatively low-level, based as it is on a stack, a heap and an array of registers.
The garbage collector is run automatically, even if it can be tuned with some special instructions.

It is worth repeating that the eAM is an abstract machine, and not a virtual machine. This
is to say that there is not necessarily a step-by-step interpretation of bytecode instructions.
The eAM model is only an abstraction of the functionality which is available at this level;
in the implementation eAM instructions are translated into C and then compiled into native
code with optimizations, or into Scheme code and then passed to Guile. However, for ease of
implementation and for better undertanding, it’s also useful to think of the eAM as a proper
machine with its registers, stack, heap and instructions. Just remember that this does not mirror
the execution model.

8.1 eAM types

Any datum used by the eAM is of exactly one of these types:

integer Integer objects hold a limited range of integer values, roughly balanced around 0;
their width is guaranteed to be at least 32-bit.

wide integer
Wide integer objects also hold a limited range of integer values. They are guaranteed
to be at least as wide as integers, and possibly wider.

float Float objects hold floating-point numbers. Their width is guaranteed to exactly
match the width of integer objects.

wide float Wide float objects hold floating-point numbers at least as wide as and possibly wider
than float objects.

wide wide float
Wide wide float objects hold floating-point numbers at least as wide as and possibly
wider than wide floats.

pointer A pointer object holds holds the memory address of another eAM datum, of itself,
or of nothing; in this latest case a pointer is called a “null pointer”. Null pointers
are all seen as identical upon comparation, as NULLs in C. Internal pointers are
forbidden: pointers are not allowed to refer to memory addresses inside a word or
inside an array. Pointers are guaranteed to be exactly as wide as integers.

array Arrays are random-access ordered collections of word objects (see below); elements
can have heterogeneous types. Arrays only hold their elements: no information
about size is implicitly included. However it is common to store length information
in the first element, when needed; some instructions are provided to make this fast
and convenient. eAM arrays are always indicized starting from 0.

The internal representation of floats, wide floats and wide wide floats should follow the IEEE
754 Standard on modern architectures.

Note that no booleans, characters or strings are provided. Objects which in epsilon have
these types, or higher-order types (such as epsilon functions, lists or tuples) are implemented
using only the above eAM types.

46 epsilon 0.2.1CVS

The integer, float and pointer types are collectlively known as word types. The reason is
that, in all reasonable architectures1, any word object exactly fits in a physical machine general
register. By contrast array, wide integer, wide float and wide wide float objects may be larger
than a physical word. For this reason word objects are typically faster to manipulate.

No objects smaller than a word are provided.
Note that no run-time type tagging exists2: it’s up to the compiler which generates eAML

code to check for type errors at compile time, or to arrange runtime checks generating appropriate
instructions when needed. When type tagging is needed on an object a (for simplicity you
can think of a C union; all other cases can be reconducted to this one), it can be realized
implementing a as an array whose (say) first element is an integer value discriminating between
all possible types that a can assume at run-time; the second (and third, fourth and so on if
needed) element holds the proper datum.

8.2 Memory model

References are managed via pointers, directly from runtime-support structures such as the stack
or the registers, or from elements of array type.

Data structures can be realized with arrays containing pointers (and other word objects, if
needed). Cyclic data structures are allowed without restrictions.

Storage allocation is realized with explicit eAM instructions, but storage reclamation is au-
tomatically managed by the garbage collector.

8.3 Representation of epsilon data in the eAM

Every epsilon object has an underlying representation in the eAM; epsilon objects of most
basic types are quite easily mapped to eAM objects of word types; for higher-order objects the
mapping is more complex.

The eAM deals with non-word objects using pointers, which are word objects: for example
a list is represented with the usual pointer-based data structure, and the whole list is referred
using a pointer to the first cons (or a null pointer if the list is empty); to summarize, an epsilon
datum which does not fit in an eAM word object is represented with non-word objects, and a
pointer (word) referring “the first element”, whatever we mean as “the first element”. Note that
internal pointers are forbidden in the eAM, so the first element must be a whole eAM objects
(which can be an array).

We are now going to describe the mapping in its details.

8.3.1 integer, character and boolean

The epsilon types integer, character, and boolean are easily mapped into eAM integers.
Note that also a character uses a full word; this enables to use modern encodings such as

Unicode (even if such support is not yet implemented). GNU epsilon is a new language, and we
deliberately chose not to be restricted by obsolete 8-bit encodings such as ASCII or Latin1.

1 These days, and in the foreseeable future, physical processors are 32-bit or 64-bit (the GNU Project does not
support 16-bit machines, since they are long obsolete). 32-bit processors should have 32-bit pointers, and 32-
bit general registers. 64-bit machines should have 64-bit pointers, and they should be able to do computations
with 64-bit integers at assembly level. If they aren’t, it’s hoped that at least the C compiler provides support
for 64-bit integer operations. We don’t know of any counterexample; please write us to bug-epsilon@gnu.org

if you know some, specifiyng.
2 opposing to Lisp and Smalltalk implementations, for example. The absence of type tags at runtime speeds up

execution and reduces memory usage.

mailto:bug-epsilon@gnu.org

Chapter 8: The epsilon Abstract Machine 47

The epsilon boolean false is represented as the eAM integer 0. true is represented by any
non-zero eAM integer.

When held in the stack or in a register these objects are copied rather than referred by
a pointer. The rationale behind this is that it would be a waste of time and memory to hold
pointers to immutable objects (remember that epsilon is a functional language), when the pointer
has the same cost as the whole object.

8.3.2 float

The epsilon type float is trivially mapped into the eAM type float. A float object fits in a
machine word.

Floats can be directly held in the stack or in a register: there are no pointers to float objects.
The rationale is the same as the one for the case above.

8.3.3 Tuples

epsilon tuples are mapped into eAM arrays holding the representation of each element; the order
of the elements in the eAM representation always reflects the order of the elements in epsilon.

No information about the length of the tuple is held at runtime, since if the program was
correctly compiled no bound-checks are ever needed at runtime for tuples.

When held in a register or in the stack the tuple is always referred by a pointer to the eAM
array which represents it.

8.3.4 Arrays

epsilon arrays of size n are mapped into eAM arrays of size n + 1, where the first element is
an integer holding the size of the array, and the following elements are the representation of the
actual elements.

Holding the information about the lenght at runtime enables the eAM to make bound checks.
Empty arrays follow the general rule: they are represented as eAM arrays of size 1, where

the only element is an integer with value 0.
When held in a register or in the stack the array is always referred by a pointer to the eAM

array which represents it.

8.3.5 Strings

epsilon strings are representated just as if they were arrays of characters.
Note that this representation allows computing the size of a string in O(1).

8.3.6 Lists

epsilon lists are represented with the usual pointer-structure: each cons holds a pointer to the
next one.

Each cons is represented as an eAM array of size 2, where the first element (the head, or
car) holds the representation of an actual list element, and the second element (the tail, or
cdr) holds a pointer to the rest of the list, or a null pointer if the rest of the list is [] (nil).

The empty list [] has no representation.
When held in a register or in the stack the list is always referred by a pointer to the eAM

array which represents its first cons, or by a null pointer if the list is empty.

48 epsilon 0.2.1CVS

8.3.7 Objects of concrete types

To do

8.3.8 Objects with behavior

To do

8.3.8.1 Promises

8.3.8.2 Functions

8.3.8.3 Actions

8.3.9 Objects of abstract types

The objects of an abstract type actually have another type (said the implementation type),
which is usually hidden in the module which defines operations on them.

epsilon objects of abstract types are represented as objects of their implementation type;
abstract types have no penality on representation. They are essentially gratis.

8.3.9.1 Examples

We are now showing the representation of some epsilon objects as eAM objects. We describe
what appears in a register holding each of the sample epsilon objects:
• 12

The eAM integer 12.
• 1.323

The eAM float 1.323.
• (1, 0.4)

A pointer to an eAM array of two elements: the first element holds the eAM integer 1, the
second one holds the eAM float 0.4. Note that the size of the tuple (2) is not needed at
runtime, so it is not explicitly stored anywhere.

• <| 1, 0.4 |>

A pointer to an eAM array of three elements: the first element holds the eAM integer 2,
which represents the size of the array; the following elements are the eAM objects 1 and
0.4.
Note how in the eAM the proper elements of the array are indicized starting at 1: the
zero-th element holds the size, which can be extracted very efficently (one or two assembler
instructions in most processors).

• <| |>

A pointer to an eAM array of one element holding the eAM integer 0.
It’s worth repeating that epsilon empty arrays are not represented as eAM null pointers.
This convention saves some nullity tests at runtime and makes the representation more
uniform.

Chapter 8: The epsilon Abstract Machine 49

• "Abc"

A pointer to an eAM array of four elements: the first element holds the eAM integer 3,
which represents the size of the string. The following elements are eAM integers holding
the integer representation of the characters ’A’, ’b’ and ’c’.

• [1; 2], which is an abbreviation of (1 :: 2 :: [])

A pointer to an eAM array c1 of two elements: the first element of c1 holds the eAM integer
1. The second element of c1 holds a pointer to the eAM array of two elements c2.
The first element of c2 holds the eAM integer 2. The second element of c2 holds a null
pointer, i.e. a “reference” to the representation of [].
Note that the elements of the list are integers in this example. If they were something more
complex, for example strings, the first elements of c1 and c2 would be pointers.

To do: examples of objects with behaviour.

8.4 Runtime support structures

Most non-word objects are stored in a garbage-collected heap. The management of the heap
is entirely transparent even at the eAM level: many instructions allocate a datum on the heap
and return a pointer to it, storing the pointer on the stack or in a register. The stack and the
registers are provided to hold temporary data.

The stack is a simple LIFO container of word objects, divided into frames. Each frame
represents an activation of a subprogram or a block, and is essential especially to implement
recursion. Many eAM instructions work on the stack, taking operands from it or using it to
return a computed value. Other instructions push or pop entire frames on the stack: they are
needed to enter or exit a block, and to implement subprogram calls. The stack is not limited in
size and can not overflow.

Some eAM instructions use the registers instead of the stack to make computations. Registers
are faster to manipulate than the stack, but are provided in a limited number and are not
sufficient by themselves to handle recursion.

Registers are created at initialization time; their number is defined by the program and
cannot grow at runtime. Registers are divided in several groups, according to the data they can
hold:

word registers
A word register, also called general register, can contain an object of any word type;
this is very useful to implement polymorphic procedures, whose semantic does not
depend on the type of the argument.
Word registers are also the only ones used by eAM instructions operating with
registers to do compuations on integers and pointers. Computations3 with floats
can not be done in word registers, even if word registers can hold float values (since
they are word-sized).

wide integer registers
A wide integer register can only contain a wide integer object.

float registers
Float registers are the only ones used by the eAM instructions operating with reg-
isters to do computations on floats. Computations with integers and pointers can
not be done in float registers.

3 The idea of “computation” does not include copying: any word-sized value can be passed in a word register
and hence blindly copied into the stack, the heap or another register. This generic operation does not depend
on the type of the operand but only on its size, and it is reasonable to allow it in general registers.

50 epsilon 0.2.1CVS

wide float registers
A wide float register can only contain a wide float object.

wide wide float registers
A wide wide float register can only contain a wide wide float object.

A similar distinction does not exist for the stack: there is only one stack, and it is limited
to word objects (including floats): you can not directly push a non-word object onto the stack:
you can only push a pointer to it.

This is an eAM program example using the stack to evaluate the expression (2 + 5) - 1:
pshci 2 # Push 2

pshci 5 # Push 5

s_addi # Pop two values, sum them and push the result

The value of (2 + 5) is on the top of the stack

pshci 1 # Push 1

s_subi # Subtract top from undertop, pop both and push

the result of the subtraction

The result is on the top of the stack

This program also evaluates the same expression, but uses registers instead of the stack:
ldci $g1 2 # $g1 := 2

ldci $g2 2 # $g2 := 5

addi $g3 $g1 $g2 # $g3 := $g1 + $g2

Now $g3 holds (2 + 5), i.e. 7

ldci $g4 1 # $g4 := 1

subi $g5 $g3 $g4 # $g5 := $g3 - $g4

Now $g5 holds the result

The previous examples are meant to illustrate the two possible styles of evaluation, and
nothing more. Both could be heavily optimized.

8.5 Subroutines and blocks

To do: talk about frame pointer, stack pointer, frame format

8.5.1 Calling conventions with operands in the stack

To do: document To do: an example

8.5.2 Calling conventions with operands in the registers

To do: design, implement and document To do: an example

8.6 The eAM garbage collector

The eAM includes a pseudo-generational mark and sweep collector with conservative pointer
finding, not incremental at the time of this writing.

The implementation is relatively simple; it can be roughly divided into two parts: the allo-
cator and the collector.

Objects are allocated from buffers called pages. There are two sorts of pages: homogeneous
pages and large pages.

Chapter 8: The epsilon Abstract Machine 51

8.6.1 Homogeneous pages

A homogeneous page contains objects (called homogeneous objects) of the same size k (in words);
all homogeneous pages have exactly the same size S (tunable via a C macro #define); hence the
number of objects in a single homogenous page depends on k: pages with a smaller k contain
more objects, and pages with a larger k contain fewer objects.

In each homogeneous page non-allocated objects are linked via a simple unidirectional free-
list. For each object there is an associated allocated bit, also stored in the same page, which
is set to 1 if and only if the object is allocated. Each page finally contains a field holding the
number of its allocated objects.

These simple data structures allow to perform the following operations with time complexity
O(1):
• check whether an object is allocated in a given page
• allocate an object from a given page
• free an object, returning it to its page
• check whether a page is empty
• check whether a page is full

Each large page also holds a GC bit for each object, used by the collector.
All homogeneous pages are allocated with alignment S using memalign(); this allows to find

the page of an homogeneous object with a bit-masking of its address, a very fast operation. In the
implementation the value of S is computed from the value of the C macro PAGE_OFFSET_WIDTH
defined in ‘eam/gc/heap.h’.

A pointer to each homogeneous page is stored in the hash table set_of_homogeneous_pages
(defined in ‘eam/gc/homogeneous.c’). This makes possible to check whether an object is homo-
geneous with complexity O(1) in the average case (one bit-masking plus one hash table access).

Homogeneous pages with various values of k are created during initialization, but of course
not covering every possibile size. So, if an object of a given size is asked, the allocator could
return a slightly larger object: in this case we speak about inexact allocation (in the other case
we speak about exact allocation). The little waste of space implied by inexact allocation seems
not to be a problem in practice.

There is an array indicized by any given possible k from 0 to the maximum allowed value
MAXIMUM_HOMOGENEOUS_SIZE, homogeneous_pages, defined in ‘eam/gc/gc.c’; among the rest it
contains, for each size, its best approximation. So also inexact allocation has complexity O(1)
when a non-full page of the right size exists.

The other fields of homogeneous_pages are, for each k, the bidirectional list of non-full
homogeneous pages for objects of size k and the bidirectional list of full homogeneous pages
for objects of size k. The list structures make easy adding or removing homogeneous pages as
needed.

A final note: even if the GNU system allows to free a block allocated with memalign() there
is no portable way to do it; so homogeneous page are actually destroyed only on GNU systems4;
on the other systems they are created and kept allocated forever, in the hope that they will be
needed again.

8.6.2 Large pages

Sometimes objects larger than MAXIMUM_HOMOGENEOUS_SIZE words, or even larger than S words,
are needed. Some other structure is needed, since those objects can not fit in homogeneous
pages some other structure is needed.

4 The type of system is automatically determined at configure time.

52 epsilon 0.2.1CVS

Managing a large page is simpler than managing a homogeneous page: a large page holds one
and only one large object: large pages are created when allocating a large object, and destroyed
when a large object is freed: there is no need to keep free-lists or allocated bits. Moreover freeing
a large object immediately releases storage; this can be an advantage when really large sizes are
involved.

Each large page also holds the GC bit5 for its object.

Large pages do not need a specific alignment: they are simply allocated with malloc() and
freed with free().

A pointer to each homogeneous object is kept in the hash table set_of_large_objects,
defined in ‘eam/gc/large.c’. This enables to check whether an object is large with complexity
O(1) in the average case (one hash table access).

All large pages are linked in the bidirectional list list_of_large_pages, defined in
‘eam/gc/gc.c’. Note that all large pages are full, since when they become empty they are
immediately destroyed, and there is no intermediate condition: large pages can only be full or
empty.

A large page is just a thin shell enclosing its large object and the little bookkeeping informa-
tion needed.

8.6.3 Allocator

After the initialization performed by void initialize_garbage_collector(), declared in
‘eam/gc/gc.h’, all data structures are set up and a homogeneous page is created for the values
of k belonging to a certain predefined set Q6. No large pages are created at initialization time.
They are created at runtime, just when needed.

The interface of the allocator is very simple; all the needed functions are declared in the
header ‘eam/gc/gc.h’.

Exact allocation is performed by word_t allocate_exact(integer_t words_no).

allocate_exact() works by allocating an object from the first page of the list of non-
full homogeneous pages at homogeneous_pages[words_no]; the list is always kept non-empty.
When the page gets full it is moved from the list of non-full pages to the list of full pages at
homogeneous_pages[words_no]; if the list of non-full pages becomes empty then a new page is
created.

Inexact allocation is performed by word_t allocate_inexact(integer_t desired_words_no).
If desired_words_no is not greater than MAXIMUM_HOMOGENEOUS_SIZE then allocate_
inexact() computes the best approximated size by simply looking at the field inexact_size
of homogeneous_pages[desired_words_no], then calls allocate_exact(); else it creates a
new large page and returns its object.

Note that allocation of large objects is always considered inexact.

Exact allocation is slightly faster than inexact allocation, but can be used only when the
requested size k belongs to Q; if the requested size does not belong to Q the behaviour is
undefined, which is a nice way to say that the program will most probably crash, and the
collector will surely not work.

5 The “bit” is effectively implemented with a word. In C it makes sense to use a bit vector, but a bit vector of
just one element effectively takes more space than a bit.

6 The current algorithm allocates pages for S = 1, 2, 3, ... MAXIMUM_SMALL_HOMOGENEOUS_SIZE and S=
2·MAXIMUM_SMALL_HOMOGENEOUS_SIZE, 4·MAXIMUM_SMALL_HOMOGENEOUS_SIZE, 8·MAXIMUM_SMALL_HOMOGENEOUS_
SIZE, ... MAXIMUM_HOMOGENEOUS_SIZE.

MAXIMUM_SMALL_HOMOGENEOUS_SIZE and MAXIMUM_HOMOGENEOUS_SIZE are defined in ‘eam/gc/gc.h’.

Chapter 8: The epsilon Abstract Machine 53

8.6.4 Collector

The header ‘eam/gc/gc.h’ also contains the interface to the collector.

void initialize_garbage_collector() transparently starts a new concurrent thread
which from time to time7 checks whether a collection would be needed, and in the affermative
case sets the flag int should_we_collect to a nonzero value.

The mutator has the responsibility to periodically8 check the flag, and request a collection
if the flag is nonzero. Note that there is no need of synchronization here: one thread reads the
flag but does not write it, the other one writes it but does not read it.

For each collection cycle the mutator must explicitly notify the collector about all roots,
calling void add_gc_root(word_t p) or, when there is more then one root in a single buffer,
void add_gc_roots(word_t* buffer, size_t words_no).

The roots of the eAM are:

• All the elements of the stack

• Word registers

• The I/O register

• Globals

• The environment register

• exception_value

• exceptions_stack[i].environment, for each element i of the exception stack

String constants are not roots: there is no need to keep them in the garbage-collected heap,
so they are simply allocated with malloc() at startup time. This saves a little time when
marking.

After notifying the collector about the roots a call to void garbage_collect() performs
marking and sweeping9.

To do: more details? Implementation is quite “conventional” here...

8.6.4.1 Pseudo-generational garbage collection

It would be slow to perform a full mark at every garbage collection cycle, so the eAM collec-
tor implements a pseudo-generational marking algorithm. What we call “pseudo-generational”
garbage collection is a particular case of the generational garbage collection, particularly simple
but quite effective. The heap is conceptually partitioned into two generations:

• the old generation contains all the object which survived the last garbage collection cycle;

• the young generation contains the objects which were allocated after the last collection.

Minor collections, performed relatively often, only scan the young generation, making the
marking phase noticeably faster; note that marking time usually dominates over sweeping time.

Major collections, performed less often10, scan both the young and the old generation. Major
collection are slower than minor collection but free more storage.

7 In the current implementation the concurrent thread wakes up every GC_TEST_TIMEOUT nanoseconds.
8 In the current implementation the mutator checks the flag right after each application of a recursive function.
9 In the current implementation garbage_collect() suspends the mutator.

10 The current implementation uses a rough heuristic: one collection every MINOR_GC_CYCLES_NO minor collections
is major (MINOR_GC_CYCLES_NO is defined in the header ‘eam/gc/gc.h’). This will be improved.

54 epsilon 0.2.1CVS

The main idea of pseudo-generational collection is that the GC bits are cleared only at the
beginning of major collections: in minor collactions the old generation objects are seen as already
marked, so they are not recursively11 scanned.

The mutator has no direct control over the generations. It can only request a collection, and
it’s the function garbage_collect() to decide whether a minor or major collection is needed.

8.6.5 Safe points

To do

8.7 eAM instructions

The instructions of the eAM are described in full detail in Chapter 9 [eAM instructions], page 55.

11 However old generation objects can be scanned from the roots. This is rarely a problem: roots should have
not a very large size (at least if stack usage is not high, and high stack usage usually indicates subotimal use
of tail-recursion).

Chapter 9: eAM instructions 55

9 eAM instructions

This chapter describes in detail all the instruction of the epsilon Abstract Machine. Familiarity
with the epsilon memory model and runtime structures is assumed.

This chapter is of no particular use for writing programs in epsilon. It is useful, instead,
to understand how the internals of epsilon work and especially to extend the language or the
runtime system.

9.1 Naming conventions

Each eAM instruction is identified by a unique mnemonic in the textual form of eAML. We are
going to introduce the rules which were used to choose the mnemonics names to make them
more consistent and easier to remember.

By convention, when an instruction works on operands with fixed type, a suffix of the
mnemonic identifies that type: i for integers, f for floats and s for strings. For example the
s_addi instruction executes an addition on integer operands.

When more than one instruction exists doing the same work, but with a version taking a
parameter from a register, another taking a parameter from the stack and still another taking one
or more immediate parameters, the versions are easily recognizable from the prefix or desinence
in their mnemonic:

• The version with immediate parameters has the _i desinence in its mnemonic.
• The version with parameters from the stack has the s_ prefix in its mnemonic.
• The version with parameters in the registers has no prefix or suffix.

For example, s_addi adds two integer taken from the stack, and s_addi_i adds an integer
taken from the stack to the immediate integer which is the parameter of the instruction.

Some instructions are provided in two versions, one safe (i.e. making runtime checks) but less
fast, the other faster but not safe. “Fast” versions are identified by a f_ prefix in their mnemonic.
If the s_ prefix is also present, s_ preceeds f_ in the mnemonic, such as in s_f_divi.

In the following immediate integer parameters are indicated by n, m, x, y or z; strings are
indicated by S, and labels by L:. Register parameters are indicated by a dollar-sign ($) followed
by an letter, such as $a or $x.

9.2 Writing conventions for stack and registers configurations

In this chapter we also describe instructions updating the stack or the registers: for brevity we
follow these writing conventions:

• Stack configurations are written horizontally, with the bottom of the stack at the left side.
The bottom is identified by a “||” symbol, the top by a “|” symbol, and elements are
separated by a “|” symbol. For example ||a|b| is a two-elements stack containing the
a object at the bottom, and the b object on the top. The “...” symbol stands for “some
elements whose value is not specified”, except when found in sequences like “|a1|...|an|”,
where the dots stand for exectly n-2 elements which have as values the elements of the
succession a from 2 to n-1.

• Register configurations are written horizontally as semicolon-separated sequences sur-
rounded by backets, such as [-1;"a";3.7]. The leftmost element represents the content of
the $0 register, the second one of $1, and so on. For the ...-notation we follow the same
conventions as in writing the stacks.

56 epsilon 0.2.1CVS

• For illustrating the effect of executing an instruction we show the configuration of stack,
registers or anything relevant before the execution, the instruction name with parameters,
and finally the configuration after the execution. When the ...-notation is used in both the
before and after configurations, the unexpressed elements are considered to be the same, if
not otherwise noted.
For example:
||...|a|

s_addi_i n

||...|a+n|

For brevity’s sake register updates can also be noted as
$a := EXP($b, ..., $z)
where $a is the updated register, and EXP($b, ..., $z) is any expression involving registers
$b, ..., $z. Note that in the expression at the right of the “:=” symbol “$x” represents the
content of the $x register, not its address.

9.3 Writing conventions for structures

If we stay at the level of the eAM, epsilon structures are not anything more than arrays (or
tuples).

Arrays are shown in a visual way as sequences of objects separated by commas and surrounded
by angular parentheses. Null pointers are written as “null”. For example this

<1, <2, <3, <4, null>>>>
is the eAM representation of the epsilon list [1; 2; 3; 4].
This, instead,
<<"test", null>, null>
is the eAM representation of the epsilon object (["test"], []), and also of the epsilon

object [["test"]].

9.4 Instructions classification

eAM instructions are divieded into several categories:
• arithmetic/logic instructions make computations of arithmetic or logic nature. Some in-

structions are available to work with integer values, others for working with float values.
• conversion instructions translate data from one representation to another.
• structures management instructions work with memory structures bigger than one word

such as arrays and conses.
• stack management instructions update the stack, copying or removing elements from the

top, or copying objects from the registers to the stack or from the stack to the registers.
• flow control instructions control the flow of the execution, with unconditional or conditional

jumps.
• subprograms management instructions manage entering and exiting from subprograms and

blocks.
• variables management instruction deal with program variables, be they locals, nonlocals or

globals.
• input/output instructions do input and output, and allow interfacing with code written in

other languages.

Chapter 9: eAM instructions 57

• exception handling instructions are used to signal error conditions and to manage failures.

• special instructions are the few instructions which do not fit in the above categories.

9.5 Arithmetic/logic instructions on integers

Arithmetic/logic instructions operating on integer values are essential since they are used even
in the simplest programs. They do not involve memory management, and for this reason they
are fast compared to other ones.

Some instructions taking two operands from the stack exist also in a version with the second
operand as an immediate parameter (for example s_addi and s_addi_i n). The versions with
immediate parameters are not always applicable, but faster.

In the following subsections we are going to describe every instruction in detail.

9.5.1 addi $a $b $c

The addi $a $b $c instruction adds the content of the $b register to the content of the $c
register, storing the result into the $a register:

$a := $b + $c

9.5.2 addi_i $a $b n

The addi_i $a $b n instruction adds n to the content of the $b register, storing the result into
the $a register:

$a := $b + n

9.5.3 andi $a $b $c

The andi $a $b $c instruction stores a nonzero value into $a if both $b and $c have nonzero
value, else it stores zero into $a.

9.5.4 divi $a $b $c

The divi $a $b $c instruction divides the content of the $b register by the content of the $c
register, storing the result into the $a register:

$a := $b / $c

If the content of the $c register is zero the execution terminates reporting an error.

9.5.5 divi_i $a $b n

The divi_i $a $b n instruction divides the content of the $b register by n, storing the result
into the $a register:

$a := $b / n

No division-by-zero check is made, since it would make never sense to use this instruction
with n=0.

58 epsilon 0.2.1CVS

9.5.6 f_divi $a $b $c

The f_divi $a $b $c instruction divides the content of the $b register by the content of the $c
register, storing the result into the $a register:

$a := $b / $c

No divide-by-zero check is made, so the program may crash if the content of the $c register
is zero. This instruction is faster than divi $a $b $c , but you should only use it when you are
definitively sure that $c can not hold a zero value.

9.5.7 f_modi $a $b $c

The f_divi $a $b $c instruction divides the content of the $b register by the content of the $c
register, storing the rest of the division into the $a register:

$a := $b mod $c

No divide-by-zero check is made, so the program may crash if the content of the $c register
is zero. This instruction is faster than divi $a $b $c , but you should only use it when you are
definitively sure that $c can not hold a zero value.

9.5.8 ldci $r n

The ldci $r n instruction updates the content of the $r register to the integer constant n:
$r := n

9.5.9 modi $a $b $c

The modi $a $b $c instruction divides the content of the $b register by the content of the $c
register, storing the rest of the division into the $a register:

$a := $b mod $c

If the content of the $c register is zero the execution terminates reporting an error.

9.5.10 modi_i $a $b n

The modi_i $a $b n instruction divides the content of the $b register by n, storing the rest of
the division into the $a register:

$a := $b mod n

No division-by-zero check is made, since it would make never sense to use this instruction
with n=0.

9.5.11 muli $a $b $c

The muli $a $b $c instruction multiplies the content of the $b register for the content of the
$c register, storing the result into the $a register:

$a := $b ·$c

9.5.12 muli_i $a $b n

The mul_i $a $b n instruction multiplies the content of the $b register for n, storing the result
into the $a register:

$a := $b ·n

Chapter 9: eAM instructions 59

9.5.13 nxori $a $b $c

The nxori $a $b $c instruction stores a nonzero value into $a if either both $b and $c have
nonzero content, or both $b and $c have zero content, else it stores zero into $a.

9.5.14 ori $a $b $c

The ori $a $b $c instruction stores a nonzero value into $a if at least one of $b and $c has
nonzero content, else it stores zero into $a.

9.5.15 s_f_divi

This instruction is identical to s_divi, except that it does not check for the divison-by-zero
error condition.

The program may crash if the top of the stack is 0; you should use this instruction only if
you are definitively sure that the divisor is not zero.

s_f_divi is faster than s_divi.

9.5.16 s_addi

The s_addi instruction replaces the two integer objects on the top of the stack with a single
object with their sum as value.

||...|a|b|

s_addi

||...|a + b|

9.5.17 s_addi_i n

The s_addi_i instruction replaces the integer object on the top of the stack with the sum of it
and the n parameter.

||...|a|

s_addi_i n

||...|a + n|

s_addi_i n is faster than pshci n; s_addi.

9.5.18 s_andi

The s_andi instruction replaces the two integer objects a and b on the top of the stack with a
single object with a nonzero value if both a and b have nonzero value, otherwise with a single
object with zero value.

For example:

||...|-34|0|

s_andi

||...|0|

60 epsilon 0.2.1CVS

9.5.19 s_divi

The s_divi instruction replaces the two integer objects on the top of the stack with a single
object with their quotient as value.

In case of division by zero this instruction prints an error message and terminates the exe-
cution of the program.

||...|a|b|

s_divi

||...|a / b|

9.5.20 s_divi_i n

The s_divi_i instruction replaces the integer object on the top of the stack with the quotient
of it and the n parameter.

The program may crash if n is 0; no divide-by-error check is done since it makes never sense
to use s_divi_i 0.

||...|a|

s_divi_i n

||...|a / n|

s_divi_i n is faster than pshci n; s_divi, and even than pshci n; s_f_divi.

9.5.21 s_eqi

The s_eqi instruction replaces the two integer objects on the top of the stack with a single
object with a nonzero value if the integer objects are equal, otherwise with zero.

For example:
||...|a|a|

s_eqi

||...|1|

9.5.22 s_gti

The s_gti instruction replaces the two integer objects a and b on the top of the stack with a
single object with a nonzero value if a is greater than b, otherwise with zero.

For example:
||...|172|200|
s_gti

||...|0|

9.5.23 s_gtei

The s_gtei instruction replaces the two integer objects a and b on the top of the stack with a
single object with a nonzero value if a is greater than or equal to b, otherwise with zero.

For example:
||...|172|172|
s_gtei

||...|-1|

Chapter 9: eAM instructions 61

9.5.24 s_lti

The s_lti instruction replaces the two integer objects a and b on the top of the stack with a
single object with a nonzero value if a is less than b, otherwise with zero.

For example:
||...|172|200|
s_lti

||...|-1|

9.5.25 s_ltei

The s_ltei instruction replaces the two integer objects a and b on the top of the stack with a
single object with a nonzero value if a is less than or equal to b, otherwise with zero.

For example:
||...|172|172|
s_ltei

||...|-1|

9.5.26 s_modi

The s_modi instruction replaces the two integer objects on the top of the stack with a single
object with the rest of their division as value.

In case of division by zero this instruction prints an error message and terminates the exe-
cution of the program.

||...|a|b|

s_divi

||...|a mod b|

9.5.27 s_modi_i n

The s_modi_i instruction replaces the integer object on the top of the stack with the rest of the
divion of it by the n parameter.

The program may crash if n is 0; no divide-by-error check is done since it makes never sense
to use s_divi_i 0.

||...|a|

s_modi_i n

||...|a mod n|

s_modi_i n is faster than pshci n; s_modi, and even than pshci n; s_f_modi.

9.5.28 s_muli

The s_muli instruction replaces the two integer objects on the top of the stack with a single
object with their product as value.

||...|a|b|

s_muli

||...|a ·b|

62 epsilon 0.2.1CVS

9.5.29 s_muli_i n

The s_muli_i instruction replaces the integer object on the top of the stack with the product
of it and the n parameter.

||...|a|

s_muli_i n

||...|a ·n|
s_muli_i n is faster than s_pshci n; muli.

9.5.30 s_noti

The s_noti instruction replaces the integer object a on the top of the stack with a nonzero
value if a has zero value, else with zero.

For example:

||...|-34|

s_noti

||...|0|

9.5.31 s_neqi

The s_neqi instruction replaces the two integer objects on the top of the stack with a single
object with value zero if the integer objects are equal, otherwise with a single object with a
nonzero value.

For example:

||...|a|a|

s_neqi

||...|0|

9.5.32 s_nxori

The s_nxori instruction replaces the two integer objects a and b on the top of the stack with
a single object with zero value if exactly one of a and b has a nonzero value, otherwise with a
single object with a nonzero value.

||...|-34|0|

s_nxori

||...|0|

9.5.33 s_ori

The s_ori instruction replaces the two integer objects a and b on the top of the stack with a
single object with a nonzero value if at least one of a and b has nonzero value, otherwise with
a single object with zero value.

||...|0|-23|

s_ori

||...|1|

Chapter 9: eAM instructions 63

9.5.34 s_subi

The s_subi instruction replaces the two integer objects on the top of the stack with a single
object with their difference as value.

||...|a|b|

s_subi

||...|a - b|

9.5.35 s_subi_i n

The s_subi_i instruction replaces the integer object on the top of the stack with the difference
of it and the n parameter.

||...|a|

s_subi_i n

||...|a - n|

s_subi_i n is faster than pshci n; s_subi.

9.5.36 s_xori

The s_xori instruction replaces the two integer objects a and b on the top of the stack with a
single object with a nonzero value if exactly one of a and b has a nonzero value, otherwise with
a single object with zero value.

||...|-34|0|
s_xori

||...|1|

9.5.37 subi $a $b $c

The subi $a $b $c instruction subtracts the content of the $c register from the content of the
$b register, storing the result into the $a register:

$a := $b - $c

9.5.38 subi_i $a $b n

The subi_i $a $b n instruction subtracts $n from the content of the $b register, storing the
result into the $a register:

$a := $b - n

9.5.39 swp $a $b

The swp $a $b instructions swaps the contents of the $a register and the $b register. The
semantics of this instruction might be summarized as:

$a := $b, $b := $a

where the two assignments take place in parallel.

9.5.40 xori $a $b $c

The xori $a $b $c instruction stores a nonzero value into $a if exactly one of $b and $c has
nonzero content, else it stores zero into $a.

64 epsilon 0.2.1CVS

9.6 Arithmetic/logic instructions on floats

9.7 Conversion instructions

9.8 Structures management instructions

9.8.1 mka $a $b

The mka $a $b instruction assigns to the $a register a new array with undefined content and
with the content of the $b register as size.

9.8.2 mka_i $a n

The mka_i $a $b instruction assigns to the $a register a new array with undefined content and
with size n.

9.8.3 s_mka

The s_mka instruction replaces the integer n on the top of the stack with a new uninitialized
array of size n:

For example:
||...|3|
s_mka

||...|<???, ???, ???>|

9.8.4 s_mka_i n

The s_mka_i n instruction pushes a new uninitialized array of size n on the top of the stack:
For example:
||...|
s_mka_i 2

||...|<???, ???>|

9.8.5 cns $a $b $c

9.8.6 s_cns

9.8.7 car $a $b

9.8.8 s_car

Chapter 9: eAM instructions 65

9.8.9 cdr $a $b

9.8.10 s_cdr

9.8.11 lkp $a $b $c

9.8.12 lkp_i $a $b n

9.8.13 s_lkp

9.8.14 s_lkp_i n

9.8.15 f_lkp $a $b $c

9.8.16 f_lkp_i $a $b n

9.8.17 s_f_lkp

9.8.18 s_f_lkp_i n

9.8.19 upd $a $b $c

9.8.20 upd_i $a n $b

9.8.21 f_upd $a $b $c

9.8.22 f_upd_i $a n $b

9.8.23 s_upd

9.8.24 s_upd_i n

9.8.25 s_f_upd

9.8.26 s_f_upd_i n

66 epsilon 0.2.1CVS

9.9 Stack management instructions

9.9.1 cpy

9.9.2 grw n

9.9.3 pop

9.9.4 popm n

9.9.5 s_swp

9.9.6 ld $r

9.9.7 st $r

9.10 Flow control instructions

9.10.1 j L:

9.10.2 jnz $r L:

9.10.3 jz $r L:

9.10.4 s_jnz L:

9.10.5 s_jz L:

9.11 Subprograms management instructions

9.11.1 cll n

9.11.2 clltr n

Chapter 9: eAM instructions 67

9.11.3 ret $r

9.11.4 s_ret

9.12 Variables management instructions

9.12.1 lcl $r n

9.12.2 s_lcl n

9.12.3 nlcl $r n m

9.12.4 s_nlcl n m

9.13 Input/output instructions

9.14 Exception handling instructions

9.15 Special instructions

9.15.1 ccod S

The ccod S instruction exectutes the C code contained in the immediate string parameter S.

9.15.2 gc

The gc instruction performs a full garbage collection cycle, temporarily suspending the program.

This instruction is used when there is an urgent need of free memory. Normally the garbage
collector would run concurrently with the program, without the need of executing eAM instruc-
tions for this purpose.

9.15.3 hlt n

The hlt n instruction halts the program. The integer parameter n is returned to the operating
system as the process exit code.

68 epsilon 0.2.1CVS

9.15.4 nop

The nop instruction does absolutely nothing. It is used in contexts where an instruction is
expected but no effect is needed, such as after a label which is the target of a jump.

For example:
Compute a number and store it into $4:
...
jz $4 END_OF_PROGRAM:
...

END_OF_PROGRAM:
nop

nop instructions have no effect on runtime performance.

Part IV - Extending epsilon 69

Part IV - Extending epsilon

This part deals with the problems of extending GNU epsilon with code written in other lan-
guages, and with the ways of interfacing epsilon with other languages.

Knowledge of the eAM (especially data representation, see Section 8.3 [Representation of
epsilon data in the eAM], page 46) and experience with C programming are assumed.

70 epsilon 0.2.1CVS

Chapter 10: C libraries 71

10 C libraries

Say you want to access a database, or to do some 3D graphics in an epsilon program. These are
not unusual requirements.

It’s relatively easy to do that in C: there is an interface someone else has written (for example
the client library of PostgreSQL libpq, or Mesa3D); you just have to call some already defined
functions in your code.

Most other languages, such as C++, Java, Python and most Lisp implementations have some
feature allowing you to call code written in C; this is a solution to the problem: instead of, for
example, natively supporting PostgreSQL, most languages allow you to call your C code in some
way, and your C code can make use of all the needed libraries.

This is also the solution provided by epsilon.

10.1 A wrong solution

Let us start with a wrong solution, which was actually implemented in an early version of epsilon.
An “easy” way to extend the library is to extend the eAM: for example, if you need access to
the C function system(), you can just add a new eAM instruction sstm, which takes a string,
converts it from the epsilon format into the C format, and calls the system() function of the C
library. They you must write some “glue” code to call the eAM instruction sstm: you will need
an epsilon function taking a string and returning an action of integer:

execute_program : string -> i/o of integer

Note that now execute_program will have to be written in eAML! There is no way around
this1, since you need to use the eAM instruction sstm, which is not generated by the epsilon
compiler.

Also note that the aAM has changed: the new instruction has made the abstract machine
incompatible with the old version; all epsilon libraries must be recompiled, too.

This solution is wrong for several different reasons:
• It incompatibly changes the eAM
• It is complicated and error-prone to write eAM instructions
• It makes the generated C code grow
• Writing the glue function in eAML is very tedious and error prone
• For linking new libraries at compile time you also have to update the Autoconf/Automake

machinery
• ...

10.1.1 The right solution

The right solution is writing the extension code at a level which is somewhere in the middle
between eAML and epsilon; you must be able to do that without recompiling the eAM, to retain
compatibility.

The eAM provides a mechanism for linking a C library at initialization time. The C library
can define some functionalities (either limited to pure calculus or comprising I/O) to be made
available to epsilon. Often a C library needs to refer to some other shared library written to
be called from C (such as libpq). This can be linked at initialization time, too, and is called a
dynamic library. Dynamic libraries are not directly visible from epsilon.

To do: I don’t like this chapter. Rewrite most of it.

1 Except modifying the compiler.

72 epsilon 0.2.1CVS

Chapter 11: Using epsilon with Scheme 73

11 Using epsilon with Scheme

74 epsilon 0.2.1CVS

Part V - Examples 75

Part V - Examples

In this part some nontrivial examples of epsilon programs are presented; they are not necessarily
useful by themselves or complete, but nonetheless they show some usage patterns quite common
in epsilon programming.

In this context formal elegance and readability is considered more important than efficiency.
Of course also the example programs are free software, covered by the GNU General Public

License (see [Copying], page 1). The complete source code for all these examples is distributed
along with GNU epsilon.

76 epsilon 0.2.1CVS

Chapter 12: mu-lisp 77

12 mu-lisp

µ-lisp is a simple Lisp1 interpreter with static scoping, fully written in epsilon.
Like any other Lisp implementation µ-lisp is interactive: the implementation of its REPL

constitues a good example of purely functional I/O.
It is a Lisp/1, i.e. it has a single namespace for variables and functions.
To do: scanner and parser...
To do...
The predefined symbols are...
To do: source overview
To do: example programs.

1 For more information about Lisp, and for realistic implementations, see http://www.lisp.org.

http://www.lisp.org

78 epsilon 0.2.1CVS

Chapter 13: mu-basic 79

13 mu-basic

To do

80 epsilon 0.2.1CVS

Appendices 81

Appendices

This part will be a collection of various important non-technical information related to epsilon,
licenses and references.

82 epsilon 0.2.1CVS

Appendix A: Copying This Manual 83

Appendix A Copying This Manual

A.1 GNU Free Documentation License

Version 1.2, November 2002

Copyright c© 2000,2001,2002 Free Software Foundation, Inc.
59 Temple Place, Suite 330, Boston, MA 02111-1307, USA

Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.

0. PREAMBLE
The purpose of this License is to make a manual, textbook, or other functional and useful
document free in the sense of freedom: to assure everyone the effective freedom to copy
and redistribute it, with or without modifying it, either commercially or noncommercially.
Secondarily, this License preserves for the author and publisher a way to get credit for their
work, while not being considered responsible for modifications made by others.
This License is a kind of “copyleft”, which means that derivative works of the document
must themselves be free in the same sense. It complements the GNU General Public License,
which is a copyleft license designed for free software.
We have designed this License in order to use it for manuals for free software, because free
software needs free documentation: a free program should come with manuals providing the
same freedoms that the software does. But this License is not limited to software manuals;
it can be used for any textual work, regardless of subject matter or whether it is published
as a printed book. We recommend this License principally for works whose purpose is
instruction or reference.

1. APPLICABILITY AND DEFINITIONS
This License applies to any manual or other work, in any medium, that contains a notice
placed by the copyright holder saying it can be distributed under the terms of this License.
Such a notice grants a world-wide, royalty-free license, unlimited in duration, to use that
work under the conditions stated herein. The “Document”, below, refers to any such manual
or work. Any member of the public is a licensee, and is addressed as “you”. You accept
the license if you copy, modify or distribute the work in a way requiring permission under
copyright law.
A “Modified Version” of the Document means any work containing the Document or a
portion of it, either copied verbatim, or with modifications and/or translated into another
language.
A “Secondary Section” is a named appendix or a front-matter section of the Document
that deals exclusively with the relationship of the publishers or authors of the Document
to the Document’s overall subject (or to related matters) and contains nothing that could
fall directly within that overall subject. (Thus, if the Document is in part a textbook of
mathematics, a Secondary Section may not explain any mathematics.) The relationship
could be a matter of historical connection with the subject or with related matters, or of
legal, commercial, philosophical, ethical or political position regarding them.
The “Invariant Sections” are certain Secondary Sections whose titles are designated, as
being those of Invariant Sections, in the notice that says that the Document is released
under this License. If a section does not fit the above definition of Secondary then it is not
allowed to be designated as Invariant. The Document may contain zero Invariant Sections.
If the Document does not identify any Invariant Sections then there are none.

84 epsilon 0.2.1CVS

The “Cover Texts” are certain short passages of text that are listed, as Front-Cover Texts or
Back-Cover Texts, in the notice that says that the Document is released under this License.
A Front-Cover Text may be at most 5 words, and a Back-Cover Text may be at most 25
words.
A “Transparent” copy of the Document means a machine-readable copy, represented in a
format whose specification is available to the general public, that is suitable for revising
the document straightforwardly with generic text editors or (for images composed of pixels)
generic paint programs or (for drawings) some widely available drawing editor, and that is
suitable for input to text formatters or for automatic translation to a variety of formats
suitable for input to text formatters. A copy made in an otherwise Transparent file format
whose markup, or absence of markup, has been arranged to thwart or discourage subsequent
modification by readers is not Transparent. An image format is not Transparent if used for
any substantial amount of text. A copy that is not “Transparent” is called “Opaque”.
Examples of suitable formats for Transparent copies include plain ascii without markup,
Texinfo input format, LaTEX input format, sgml or xml using a publicly available dtd,
and standard-conforming simple html, PostScript or pdf designed for human modification.
Examples of transparent image formats include png, xcf and jpg. Opaque formats include
proprietary formats that can be read and edited only by proprietary word processors, sgml

or xml for which the dtd and/or processing tools are not generally available, and the
machine-generated html, PostScript or pdf produced by some word processors for output
purposes only.
The “Title Page” means, for a printed book, the title page itself, plus such following pages
as are needed to hold, legibly, the material this License requires to appear in the title page.
For works in formats which do not have any title page as such, “Title Page” means the
text near the most prominent appearance of the work’s title, preceding the beginning of the
body of the text.
A section “Entitled XYZ” means a named subunit of the Document whose title either
is precisely XYZ or contains XYZ in parentheses following text that translates XYZ in
another language. (Here XYZ stands for a specific section name mentioned below, such
as “Acknowledgements”, “Dedications”, “Endorsements”, or “History”.) To “Preserve the
Title” of such a section when you modify the Document means that it remains a section
“Entitled XYZ” according to this definition.
The Document may include Warranty Disclaimers next to the notice which states that
this License applies to the Document. These Warranty Disclaimers are considered to be
included by reference in this License, but only as regards disclaiming warranties: any other
implication that these Warranty Disclaimers may have is void and has no effect on the
meaning of this License.

2. VERBATIM COPYING
You may copy and distribute the Document in any medium, either commercially or noncom-
mercially, provided that this License, the copyright notices, and the license notice saying
this License applies to the Document are reproduced in all copies, and that you add no
other conditions whatsoever to those of this License. You may not use technical measures
to obstruct or control the reading or further copying of the copies you make or distribute.
However, you may accept compensation in exchange for copies. If you distribute a large
enough number of copies you must also follow the conditions in section 3.
You may also lend copies, under the same conditions stated above, and you may publicly
display copies.

3. COPYING IN QUANTITY
If you publish printed copies (or copies in media that commonly have printed covers) of the
Document, numbering more than 100, and the Document’s license notice requires Cover

Appendix A: Copying This Manual 85

Texts, you must enclose the copies in covers that carry, clearly and legibly, all these Cover
Texts: Front-Cover Texts on the front cover, and Back-Cover Texts on the back cover. Both
covers must also clearly and legibly identify you as the publisher of these copies. The front
cover must present the full title with all words of the title equally prominent and visible.
You may add other material on the covers in addition. Copying with changes limited to
the covers, as long as they preserve the title of the Document and satisfy these conditions,
can be treated as verbatim copying in other respects.
If the required texts for either cover are too voluminous to fit legibly, you should put the
first ones listed (as many as fit reasonably) on the actual cover, and continue the rest onto
adjacent pages.
If you publish or distribute Opaque copies of the Document numbering more than 100, you
must either include a machine-readable Transparent copy along with each Opaque copy,
or state in or with each Opaque copy a computer-network location from which the general
network-using public has access to download using public-standard network protocols a
complete Transparent copy of the Document, free of added material. If you use the latter
option, you must take reasonably prudent steps, when you begin distribution of Opaque
copies in quantity, to ensure that this Transparent copy will remain thus accessible at the
stated location until at least one year after the last time you distribute an Opaque copy
(directly or through your agents or retailers) of that edition to the public.
It is requested, but not required, that you contact the authors of the Document well before
redistributing any large number of copies, to give them a chance to provide you with an
updated version of the Document.

4. MODIFICATIONS
You may copy and distribute a Modified Version of the Document under the conditions
of sections 2 and 3 above, provided that you release the Modified Version under precisely
this License, with the Modified Version filling the role of the Document, thus licensing
distribution and modification of the Modified Version to whoever possesses a copy of it. In
addition, you must do these things in the Modified Version:
A. Use in the Title Page (and on the covers, if any) a title distinct from that of the

Document, and from those of previous versions (which should, if there were any, be
listed in the History section of the Document). You may use the same title as a previous
version if the original publisher of that version gives permission.

B. List on the Title Page, as authors, one or more persons or entities responsible for
authorship of the modifications in the Modified Version, together with at least five of
the principal authors of the Document (all of its principal authors, if it has fewer than
five), unless they release you from this requirement.

C. State on the Title page the name of the publisher of the Modified Version, as the
publisher.

D. Preserve all the copyright notices of the Document.
E. Add an appropriate copyright notice for your modifications adjacent to the other copy-

right notices.
F. Include, immediately after the copyright notices, a license notice giving the public

permission to use the Modified Version under the terms of this License, in the form
shown in the Addendum below.

G. Preserve in that license notice the full lists of Invariant Sections and required Cover
Texts given in the Document’s license notice.

H. Include an unaltered copy of this License.
I. Preserve the section Entitled “History”, Preserve its Title, and add to it an item stating

at least the title, year, new authors, and publisher of the Modified Version as given

86 epsilon 0.2.1CVS

on the Title Page. If there is no section Entitled “History” in the Document, create
one stating the title, year, authors, and publisher of the Document as given on its
Title Page, then add an item describing the Modified Version as stated in the previous
sentence.

J. Preserve the network location, if any, given in the Document for public access to a
Transparent copy of the Document, and likewise the network locations given in the
Document for previous versions it was based on. These may be placed in the “History”
section. You may omit a network location for a work that was published at least four
years before the Document itself, or if the original publisher of the version it refers to
gives permission.

K. For any section Entitled “Acknowledgements” or “Dedications”, Preserve the Title
of the section, and preserve in the section all the substance and tone of each of the
contributor acknowledgements and/or dedications given therein.

L. Preserve all the Invariant Sections of the Document, unaltered in their text and in their
titles. Section numbers or the equivalent are not considered part of the section titles.

M. Delete any section Entitled “Endorsements”. Such a section may not be included in
the Modified Version.

N. Do not retitle any existing section to be Entitled “Endorsements” or to conflict in title
with any Invariant Section.

O. Preserve any Warranty Disclaimers.

If the Modified Version includes new front-matter sections or appendices that qualify as
Secondary Sections and contain no material copied from the Document, you may at your
option designate some or all of these sections as invariant. To do this, add their titles to
the list of Invariant Sections in the Modified Version’s license notice. These titles must be
distinct from any other section titles.

You may add a section Entitled “Endorsements”, provided it contains nothing but endorse-
ments of your Modified Version by various parties—for example, statements of peer review
or that the text has been approved by an organization as the authoritative definition of a
standard.

You may add a passage of up to five words as a Front-Cover Text, and a passage of up
to 25 words as a Back-Cover Text, to the end of the list of Cover Texts in the Modified
Version. Only one passage of Front-Cover Text and one of Back-Cover Text may be added
by (or through arrangements made by) any one entity. If the Document already includes
a cover text for the same cover, previously added by you or by arrangement made by the
same entity you are acting on behalf of, you may not add another; but you may replace the
old one, on explicit permission from the previous publisher that added the old one.

The author(s) and publisher(s) of the Document do not by this License give permission to
use their names for publicity for or to assert or imply endorsement of any Modified Version.

5. COMBINING DOCUMENTS

You may combine the Document with other documents released under this License, under
the terms defined in section 4 above for modified versions, provided that you include in the
combination all of the Invariant Sections of all of the original documents, unmodified, and
list them all as Invariant Sections of your combined work in its license notice, and that you
preserve all their Warranty Disclaimers.

The combined work need only contain one copy of this License, and multiple identical
Invariant Sections may be replaced with a single copy. If there are multiple Invariant
Sections with the same name but different contents, make the title of each such section
unique by adding at the end of it, in parentheses, the name of the original author or

Appendix A: Copying This Manual 87

publisher of that section if known, or else a unique number. Make the same adjustment to
the section titles in the list of Invariant Sections in the license notice of the combined work.

In the combination, you must combine any sections Entitled “History” in the various original
documents, forming one section Entitled “History”; likewise combine any sections Entitled
“Acknowledgements”, and any sections Entitled “Dedications”. You must delete all sections
Entitled “Endorsements.”

6. COLLECTIONS OF DOCUMENTS

You may make a collection consisting of the Document and other documents released under
this License, and replace the individual copies of this License in the various documents with
a single copy that is included in the collection, provided that you follow the rules of this
License for verbatim copying of each of the documents in all other respects.

You may extract a single document from such a collection, and distribute it individually
under this License, provided you insert a copy of this License into the extracted document,
and follow this License in all other respects regarding verbatim copying of that document.

7. AGGREGATION WITH INDEPENDENT WORKS

A compilation of the Document or its derivatives with other separate and independent
documents or works, in or on a volume of a storage or distribution medium, is called an
“aggregate” if the copyright resulting from the compilation is not used to limit the legal
rights of the compilation’s users beyond what the individual works permit. When the
Document is included an aggregate, this License does not apply to the other works in the
aggregate which are not themselves derivative works of the Document.

If the Cover Text requirement of section 3 is applicable to these copies of the Document,
then if the Document is less than one half of the entire aggregate, the Document’s Cover
Texts may be placed on covers that bracket the Document within the aggregate, or the
electronic equivalent of covers if the Document is in electronic form. Otherwise they must
appear on printed covers that bracket the whole aggregate.

8. TRANSLATION

Translation is considered a kind of modification, so you may distribute translations of the
Document under the terms of section 4. Replacing Invariant Sections with translations
requires special permission from their copyright holders, but you may include translations
of some or all Invariant Sections in addition to the original versions of these Invariant
Sections. You may include a translation of this License, and all the license notices in
the Document, and any Warrany Disclaimers, provided that you also include the original
English version of this License and the original versions of those notices and disclaimers. In
case of a disagreement between the translation and the original version of this License or a
notice or disclaimer, the original version will prevail.

If a section in the Document is Entitled “Acknowledgements”, “Dedications”, or “History”,
the requirement (section 4) to Preserve its Title (section 1) will typically require changing
the actual title.

9. TERMINATION

You may not copy, modify, sublicense, or distribute the Document except as expressly
provided for under this License. Any other attempt to copy, modify, sublicense or distribute
the Document is void, and will automatically terminate your rights under this License.
However, parties who have received copies, or rights, from you under this License will not
have their licenses terminated so long as such parties remain in full compliance.

10. FUTURE REVISIONS OF THIS LICENSE

The Free Software Foundation may publish new, revised versions of the GNU Free Doc-
umentation License from time to time. Such new versions will be similar in spirit to

88 epsilon 0.2.1CVS

the present version, but may differ in detail to address new problems or concerns. See
http://www.gnu.org/copyleft/.
Each version of the License is given a distinguishing version number. If the Document
specifies that a particular numbered version of this License “or any later version” applies
to it, you have the option of following the terms and conditions either of that specified
version or of any later version that has been published (not as a draft) by the Free Software
Foundation. If the Document does not specify a version number of this License, you may
choose any version ever published (not as a draft) by the Free Software Foundation.

http://www.gnu.org/copyleft/

Appendix A: Copying This Manual 89

A.1.1 ADDENDUM: How to use this License for your documents

To use this License in a document you have written, include a copy of the License in the document
and put the following copyright and license notices just after the title page:

Copyright (C) year your name.

Permission is granted to copy, distribute and/or modify this document

under the terms of the GNU Free Documentation License, Version 1.2

or any later version published by the Free Software Foundation;

with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts.

A copy of the license is included in the section entitled ‘‘GNU

Free Documentation License’’.

If you have Invariant Sections, Front-Cover Texts and Back-Cover Texts, replace the
“with...Texts.” line with this:

with the Invariant Sections being list their titles, with

the Front-Cover Texts being list, and with the Back-Cover Texts

being list.

If you have Invariant Sections without Cover Texts, or some other combination of the three,
merge those two alternatives to suit the situation.

If your document contains nontrivial examples of program code, we recommend releasing
these examples in parallel under your choice of free software license, such as the GNU General
Public License, to permit their use in free software.

90 epsilon 0.2.1CVS

Index 91

Index

.

. 12

:
: . 12
:: . 14

[
[] . 14

A
abstract . 21
Ada . 10
algoebra . 11
algorithm . 53
alignment . 52
allocate . 51
allocated bit . 51
allocator . 50, 52
analysis . 11
application . 12, 53
approximated size (of homogeneous object) . . . 51, 52
architecture . 43
argument . 12
assembler . 43
audience . 9

B
backpatch . 43, 44
bash . 41, 43
bidirectional list . 51, 52
Bison . 9, 41, 43
bit vector . 52
bit, allocated . 51
bit, GC . 51
bit-mask . 51
Boehm-Demers garbage collector 9
book . 11, 12, 14
boolean . 14
bootstrap . 10
bug-report . 9
bytecode . 43
bytecode archive file . 43
bytecode object file . 43
bytecode-to-C translator . 43
bytecode.c . 44

C
C . 9, 10, 41, 43
C++ . 10
C-library . 10
calculator . 11
car . 14
cdr . 14
chess . 11

clear (GC bits). 53
collection . 54
collector . 50, 52, 53
comments . 9
compiler . 43
compiler design . 41
computations’ order . 43
compute . 11, 12
computer science . 20
cons . 14
conservative pointer finding . 50
constraint . 12
control flow . 43
correction . 9
crash . 52
currying . 13
cycle, garbage collection . 53

D
data structure . 11, 14
define . 12, 13
definition . 14
desk calculator . 11

E
eAM . 10, 43
eAML . 10, 43
eamlas . 43
eamlas.l . 43
eamlas.y . 43
empty . 14
empty (homogeneous page) . 51
empty list . 14
environment . 20, 43, 53
environment register . 53
epsilon . 9
epsilon Abstract Machine . 10, 43
epsilon Abstract Machine Language 43
epsilon Abstract Macine Language 10
epsilonlex . 10
epsilonyacc . 10
exact allocation . 51, 52
exception_stack . 53
exception_value . 53
expression . 11
external reference . 43

F
fact . 13, 14
factorial . 13
false . 14
FDL, GNU Free Documentation License 83
file organization in the assembler source 43
finite . 11
first-class object. 20
flag, garbage collection . 53
flex . 9, 41, 43
forward reference . 9

92 epsilon 0.2.1CVS

foundations . 11
free . 51, 53
free software . 41
free-list . 51
full (homogeneous page) . 51
full homogeneous pages . 52
function . 11, 20, 21, 53

G
garbage collector. 10, 50
garbage collector, Boehm-Demers 9
GC bit . 51, 52, 53
generation. 53, 54
generational garbage collection 53
global . 53
GNU . 51
GNU General Public License 1, 41
GNU Guile . 10
GNU Project . 10
Golfarini, Matteo . 10
graphics . 10, 11
Guile . 10

H
hash table . 44, 51, 52
Haskell . 10, 20, 21
head . 14
heap . 53
high-level . 11
history . 9
homogeneous . 11
homogeneous object . 51
homogeneous page 50, 51, 52, 53
house . 11

I
I/O register . 53
I/O system . 10
I/O, purely functional . 21
id . 13
identity . 13
imperative . 19, 43
implementation . 41, 43
incremental . 50
inexact allocation . 51, 52
infinite . 11
influence . 10
initialization . 51
initialization, garbage collector 52
insert . 14
integer . 11, 14
interface (allocator) . 52
interface (collector) . 53
internals . 41, 43

J
Java . 10

K
k . 51

L
lambda . 12

lambda-notation . 12

large object . 51

large objects . 52

large page . 50, 51, 52, 53

layer . 43

library, S-expression . 10

linker . 43

Lisp . 10, 14

list . 14, 51, 52

list of books . 14

list of integers . 14

low-level . 11

LVM . 9

M
mailing-list . 9

major collection . 53, 54

make_eamlas_l. 43

make_eamlas_y. 43

map . 12

mark . 53

mark and sweep . 50

mathematical foundations. 11

mathematics . 21

meaning . 43

memalign() . 51

memory allocation and freeing 11

minor collection . 53, 54

ML . 10, 20, 21

module . 43

more than one argument . 12

mutator . 53, 54

N
native code . 43

natural . 11, 13

natural numbers . 11

negative . 11

non-full homogeneous pages . 52

notify (garbage collection) . 53

null . 14

number . 11

number of allocated objects . 51

O
old generation . 53

operating system . 41

optimizing C compiler . 43

order . 14

order of the computations. 43

Index 93

P
page (garbage collaction) . 50
parameter . 12
partial application. 13
pattern . 14
people . 11
performance . 43
plus . 12, 13
pointer . 11
polymorphism . 14
portability . 51
practical . 21
pseudo-generational . 50
pseudo-generational garbage collection 53
purely functional . 21
purely functional I/O system . 10
Python . 10

Q
Q . 52

R
recursion . 13, 15, 21
recursive definition . 14
recursive function . 53
reference . 9, 11
reference counter (LVM) . 9
referential transparency . 20, 21
register . 53
relation . 12
representation . 11
representation of data structures 11
result . 12
return . 12
reverse number . 12
RMS . 10
root, garbage collection . 53
runtime . 52

S
S . 51
S-expression . 10
Scheme . 10

script . 43
semantics . 20
sequence . 14
set . 11, 12, 21
set of books . 12
side effect . 20
single-pass . 43
Smalltalk . 10
stack . 53
Stallman, Richard . 10
startup . 51
store . 20
string constant . 53
succ . 12
successor . 12
suggestions . 9
sweep . 53
synchronization . 53

T
T1 . 14
tail . 14
textual form of eAML . 43
thread . 53
thread (garbage collector) . 53
translator . 43
true . 14
tutorial . 11
tutorial, functional programming 9
type . 11, 12, 14
Type inference . 20
type safety . 20

U
undefined behavious . 52

W
word . 11
word register . 53

Y
young generation . 53

94 epsilon 0.2.1CVS

	GNU GENERAL PUBLIC LICENSE
	Preamble
	TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND MODIFICATION
	Appendix: How to Apply These Terms to Your New Programs

	Part I - Introduction to epsilon
	Introduction
	Suggestions, bug-reports and comments
	Audience
	History

	Functional programming tutorial
	What functional programming is
	Mathematical foundations
	Sets
	Functions

	Lambda-notation
	A first introduction to recursion
	Introduction to lists
	More on lists: empty, head and tail
	More on recursion
	The function last
	The function interval
	Tail-recursion
	Non-termination: the function dontstop

	Differences from imperative programming
	No side effects
	Recursion instead of loops
	No pointers or references
	First-class functions
	Higher-order
	Referential transparency
	Type safety
	Type inference
	Purely functional I/O

	Before going on

	epsilon tutorial
	Before starting: a notice
	The interpreter and the compiler
	Using the epsilon interpreter: a first session
	Interpreter syntax and epsilon syntax

	Queries and definitions
	Booleans
	Logical connectives

	Conditionals: if..then..else
	Temporary variable bindings: let..be..in
	Digression: free occurrences and bound occurrences
	A more formal explaination

	Recursive functions

	Part II - Specification
	Language
	Lexicon
	Whitespace
	Comments
	Identifiers
	Numbers
	Characters and strings

	Basic types and expressions
	The void expression
	Integer expressions
	Floating-point expressions
	Boolean expressions
	Character expressions
	String expressions
	Promise expressions

	Basic constructs
	The declare declaring construct
	The define naming construct
	The if..then..else conditional construct
	The let block construct

	Functions
	lambda-notation
	Functions with more than one argument
	Recursion
	The fix fixpoint operator
	Mutually-recursive functions

	Higher-order types
	Lists
	Arrays
	Concrete types

	Type inference
	Type declarations in function parameters

	Exceptions
	Modules
	Abstract types and synonym types

	Polymorphism
	Classes
	Monads
	The epsilon meta-interpreter
	Foreign languages interface
	Calling C from epsilon
	Calling epsilon from C

	Library
	Default prelude
	Containers
	Meta-interpreter and meta-compiler
	I/O
	Terminal I/O
	Curses I/O
	Filesystem I/O
	Sockets I/O
	Graphics I/O with OpenGL
	CORBA bindings
	Bonobo bindings

	Tools
	Common command line behavior
	The epsilon interpreter
	The epsilonc compiler
	The eamlas assembler
	The eamld linker
	The eamx2c eAM executable to C compiler
	The eamx2scheme eAM executable to Scheme compiler
	The epsilonlex scanner generator
	The epsilonyacc parser generator

	Part III - Internals
	Internals overview
	Architecture
	The epsilonc compiler
	The eamlas assembler
	The eAM abstract machine
	The eamold linker
	The eamo2c bytecode-to-C translator
	The epsilonlex scanner generator
	The epsilonyacc parser generator

	Extending the eAM
	File formats
	eAML file format
	bytecode object file format
	bytecode archive file format

	The epsilon Abstract Machine
	eAM types
	Memory model
	Representation of epsilon data in the eAM
	integer, character and boolean
	float
	Tuples
	Arrays
	Strings
	Lists
	Objects of concrete types
	Objects with behavior
	Promises
	Functions
	Actions

	Objects of abstract types
	Examples

	Runtime support structures
	Subroutines and blocks
	Calling conventions with operands in the stack
	Calling conventions with operands in the registers

	The eAM garbage collector
	Homogeneous pages
	Large pages
	Allocator
	Collector
	Pseudo-generational garbage collection

	Safe points

	eAM instructions

	eAM instructions
	Naming conventions
	Writing conventions for stack and registers configurations
	Writing conventions for structures
	Instructions classification
	Arithmetic/logic instructions on integers
	addi $a $b $c
	addi_i $a $b n
	andi $a $b $c
	divi $a $b $c
	divi_i $a $b n
	f_divi $a $b $c
	f_modi $a $b $c
	ldci $r n
	modi $a $b $c
	modi_i $a $b n
	muli $a $b $c
	muli_i $a $b n
	nxori $a $b $c
	ori $a $b $c
	s_f_divi
	s_addi
	s_addi_i n
	s_andi
	s_divi
	s_divi_i n
	s_eqi
	s_gti
	s_gtei
	s_lti
	s_ltei
	s_modi
	s_modi_i n
	s_muli
	s_muli_i n
	s_noti
	s_neqi
	s_nxori
	s_ori
	s_subi
	s_subi_i n
	s_xori
	subi $a $b $c
	subi_i $a $b n
	swp $a $b
	xori $a $b $c

	Arithmetic/logic instructions on floats
	Conversion instructions
	Structures management instructions
	mka $a $b
	mka_i $a n
	s_mka
	s_mka_i n
	cns $a $b $c
	s_cns
	car $a $b
	s_car
	cdr $a $b
	s_cdr
	lkp $a $b $c
	lkp_i $a $b n
	s_lkp
	s_lkp_i n
	f_lkp $a $b $c
	f_lkp_i $a $b n
	s_f_lkp
	s_f_lkp_i n
	upd $a $b $c
	upd_i $a n $b
	f_upd $a $b $c
	f_upd_i $a n $b
	s_upd
	s_upd_i n
	s_f_upd
	s_f_upd_i n

	Stack management instructions
	cpy
	grw n
	pop
	popm n
	s_swp
	ld $r
	st $r

	Flow control instructions
	j L:
	jnz $r L:
	jz $r L:
	s_jnz L:
	s_jz L:

	Subprograms management instructions
	cll n
	clltr n
	ret $r
	s_ret

	Variables management instructions
	lcl $r n
	s_lcl n
	nlcl $r n m
	s_nlcl n m

	Input/output instructions
	Exception handling instructions
	Special instructions
	ccod S
	gc
	hlt n
	nop

	Part IV - Extending epsilon
	C libraries
	A wrong solution
	The right solution

	Using epsilon with Scheme
	Part V - Examples
	mu-lisp
	mu-basic
	Appendices
	Copying This Manual
	GNU Free Documentation License
	ADDENDUM: How to use this License for your documents

	Index

