Next: , Previous: Definition of Legendre Forms, Up: Elliptic Integrals


7.13.2 Definition of Carlson Forms

The Carlson symmetric forms of elliptical integrals RC(x,y), RD(x,y,z), RF(x,y,z) and RJ(x,y,z,p) are defined by,

         RC(x,y) = 1/2 \int_0^\infty dt (t+x)^(-1/2) (t+y)^(-1)
     
       RD(x,y,z) = 3/2 \int_0^\infty dt (t+x)^(-1/2) (t+y)^(-1/2) (t+z)^(-3/2)
     
       RF(x,y,z) = 1/2 \int_0^\infty dt (t+x)^(-1/2) (t+y)^(-1/2) (t+z)^(-1/2)
     
     RJ(x,y,z,p) = 3/2 \int_0^\infty dt
                      (t+x)^(-1/2) (t+y)^(-1/2) (t+z)^(-1/2) (t+p)^(-1)