Next: Linear Algebra References and Further Reading, Previous: Tridiagonal Systems, Up: Linear Algebra
The following program solves the linear system A x = b. The system to be solved is,
[ 0.18 0.60 0.57 0.96 ] [x0] [1.0] [ 0.41 0.24 0.99 0.58 ] [x1] = [2.0] [ 0.14 0.30 0.97 0.66 ] [x2] [3.0] [ 0.51 0.13 0.19 0.85 ] [x3] [4.0]
and the solution is found using LU decomposition of the matrix A.
#include <stdio.h> #include <gsl/gsl_linalg.h> int main (void) { double a_data[] = { 0.18, 0.60, 0.57, 0.96, 0.41, 0.24, 0.99, 0.58, 0.14, 0.30, 0.97, 0.66, 0.51, 0.13, 0.19, 0.85 }; double b_data[] = { 1.0, 2.0, 3.0, 4.0 }; gsl_matrix_view m = gsl_matrix_view_array (a_data, 4, 4); gsl_vector_view b = gsl_vector_view_array (b_data, 4); gsl_vector *x = gsl_vector_alloc (4); int s; gsl_permutation * p = gsl_permutation_alloc (4); gsl_linalg_LU_decomp (&m.matrix, p, &s); gsl_linalg_LU_solve (&m.matrix, p, &b.vector, x); printf ("x = \n"); gsl_vector_fprintf (stdout, x, "%g"); gsl_permutation_free (p); return 0; }
Here is the output from the program,
x = -4.05205 -12.6056 1.66091 8.69377
This can be verified by multiplying the solution x by the original matrix A using gnu octave,
octave> A = [ 0.18, 0.60, 0.57, 0.96; 0.41, 0.24, 0.99, 0.58; 0.14, 0.30, 0.97, 0.66; 0.51, 0.13, 0.19, 0.85 ]; octave> x = [ -4.05205; -12.6056; 1.66091; 8.69377]; octave> A * x ans = 1.0000 2.0000 3.0000 4.0000
This reproduces the original right-hand side vector, b, in accordance with the equation A x = b.