Next: Multimin References and Further Reading, Previous: Multimin Algorithms, Up: Multidimensional Minimization
This example program finds the minimum of the paraboloid function defined earlier. The location of the minimum is offset from the origin in x and y, and the function value at the minimum is non-zero. The main program is given below, it requires the example function given earlier in this chapter.
int main (void) { size_t iter = 0; int status; const gsl_multimin_fdfminimizer_type *T; gsl_multimin_fdfminimizer *s; /* Position of the minimum (1,2). */ double par[2] = { 1.0, 2.0 }; gsl_vector *x; gsl_multimin_function_fdf my_func; my_func.f = &my_f; my_func.df = &my_df; my_func.fdf = &my_fdf; my_func.n = 2; my_func.params = ∥ /* Starting point, x = (5,7) */ x = gsl_vector_alloc (2); gsl_vector_set (x, 0, 5.0); gsl_vector_set (x, 1, 7.0); T = gsl_multimin_fdfminimizer_conjugate_fr; s = gsl_multimin_fdfminimizer_alloc (T, 2); gsl_multimin_fdfminimizer_set (s, &my_func, x, 0.01, 1e-4); do { iter++; status = gsl_multimin_fdfminimizer_iterate (s); if (status) break; status = gsl_multimin_test_gradient (s->gradient, 1e-3); if (status == GSL_SUCCESS) printf ("Minimum found at:\n"); printf ("%5d %.5f %.5f %10.5f\n", iter, gsl_vector_get (s->x, 0), gsl_vector_get (s->x, 1), s->f); } while (status == GSL_CONTINUE && iter < 100); gsl_multimin_fdfminimizer_free (s); gsl_vector_free (x); return 0; }
The initial step-size is chosen as 0.01, a conservative estimate in this case, and the line minimization parameter is set at 0.0001. The program terminates when the norm of the gradient has been reduced below 0.001. The output of the program is shown below,
x y f 1 4.99629 6.99072 687.84780 2 4.98886 6.97215 683.55456 3 4.97400 6.93501 675.01278 4 4.94429 6.86073 658.10798 5 4.88487 6.71217 625.01340 6 4.76602 6.41506 561.68440 7 4.52833 5.82083 446.46694 8 4.05295 4.63238 261.79422 9 3.10219 2.25548 75.49762 10 2.85185 1.62963 67.03704 11 2.19088 1.76182 45.31640 12 0.86892 2.02622 30.18555 Minimum found at: 13 1.00000 2.00000 30.00000
Note that the algorithm gradually increases the step size as it successfully moves downhill, as can be seen by plotting the successive points.
The conjugate gradient algorithm finds the minimum on its second direction because the function is purely quadratic. Additional iterations would be needed for a more complicated function.
Here is another example using the Nelder-Mead Simplex algorithm to minimize the same example object function, as above.
int main(void) { size_t np = 2; double par[2] = {1.0, 2.0}; const gsl_multimin_fminimizer_type *T = gsl_multimin_fminimizer_nmsimplex; gsl_multimin_fminimizer *s = NULL; gsl_vector *ss, *x; gsl_multimin_function minex_func; size_t iter = 0, i; int status; double size; /* Initial vertex size vector */ ss = gsl_vector_alloc (np); /* Set all step sizes to 1 */ gsl_vector_set_all (ss, 1.0); /* Starting point */ x = gsl_vector_alloc (np); gsl_vector_set (x, 0, 5.0); gsl_vector_set (x, 1, 7.0); /* Initialize method and iterate */ minex_func.f = &my_f; minex_func.n = np; minex_func.params = (void *)∥ s = gsl_multimin_fminimizer_alloc (T, np); gsl_multimin_fminimizer_set (s, &minex_func, x, ss); do { iter++; status = gsl_multimin_fminimizer_iterate(s); if (status) break; size = gsl_multimin_fminimizer_size (s); status = gsl_multimin_test_size (size, 1e-2); if (status == GSL_SUCCESS) { printf ("converged to minimum at\n"); } printf ("%5d ", iter); for (i = 0; i < np; i++) { printf ("%10.3e ", gsl_vector_get (s->x, i)); } printf ("f() = %7.3f size = %.3f\n", s->fval, size); } while (status == GSL_CONTINUE && iter < 100); gsl_vector_free(x); gsl_vector_free(ss); gsl_multimin_fminimizer_free (s); return status; }
The minimum search stops when the Simplex size drops to 0.01. The output is shown below.
1 6.500e+00 5.000e+00 f() = 512.500 size = 1.082 2 5.250e+00 4.000e+00 f() = 290.625 size = 1.372 3 5.250e+00 4.000e+00 f() = 290.625 size = 1.372 4 5.500e+00 1.000e+00 f() = 252.500 size = 1.372 5 2.625e+00 3.500e+00 f() = 101.406 size = 1.823 6 3.469e+00 1.375e+00 f() = 98.760 size = 1.526 7 1.820e+00 3.156e+00 f() = 63.467 size = 1.105 8 1.820e+00 3.156e+00 f() = 63.467 size = 1.105 9 1.016e+00 2.812e+00 f() = 43.206 size = 1.105 10 2.041e+00 2.008e+00 f() = 40.838 size = 0.645 11 1.236e+00 1.664e+00 f() = 32.816 size = 0.645 12 1.236e+00 1.664e+00 f() = 32.816 size = 0.447 13 5.225e-01 1.980e+00 f() = 32.288 size = 0.447 14 1.103e+00 2.073e+00 f() = 30.214 size = 0.345 15 1.103e+00 2.073e+00 f() = 30.214 size = 0.264 16 1.103e+00 2.073e+00 f() = 30.214 size = 0.160 17 9.864e-01 1.934e+00 f() = 30.090 size = 0.132 18 9.190e-01 1.987e+00 f() = 30.069 size = 0.092 19 1.028e+00 2.017e+00 f() = 30.013 size = 0.056 20 1.028e+00 2.017e+00 f() = 30.013 size = 0.046 21 1.028e+00 2.017e+00 f() = 30.013 size = 0.033 22 9.874e-01 1.985e+00 f() = 30.006 size = 0.028 23 9.846e-01 1.995e+00 f() = 30.003 size = 0.023 24 1.007e+00 2.003e+00 f() = 30.001 size = 0.012 converged to minimum at 25 1.007e+00 2.003e+00 f() = 30.001 size = 0.010
The simplex size first increases, while the simplex moves towards the minimum. After a while the size begins to decrease as the simplex contracts around the minimum.