Next: Numerical Differentiation References, Previous: Numerical Differentiation functions, Up: Numerical Differentiation
The following code estimates the derivative of the function
f(x) = x^{3/2}
at x=2 and at x=0. The function f(x) is
undefined for x<0 so the derivative at x=0 is computed
using gsl_deriv_forward
.
#include <stdio.h> #include <gsl/gsl_math.h> #include <gsl/gsl_deriv.h> double f (double x, void * params) { return pow (x, 1.5); } int main (void) { gsl_function F; double result, abserr; F.function = &f; F.params = 0; printf ("f(x) = x^(3/2)\n"); gsl_deriv_central (&F, 2.0, 1e-8, &result, &abserr); printf ("x = 2.0\n"); printf ("f'(x) = %.10f +/- %.10f\n", result, abserr); printf ("exact = %.10f\n\n", 1.5 * sqrt(2.0)); gsl_deriv_forward (&F, 0.0, 1e-8, &result, &abserr); printf ("x = 0.0\n"); printf ("f'(x) = %.10f +/- %.10f\n", result, abserr); printf ("exact = %.10f\n", 0.0); return 0; }
Here is the output of the program,
$ ./a.outf(x) = x^(3/2) x = 2.0 f'(x) = 2.1213203120 +/- 0.0000004064 exact = 2.1213203436 x = 0.0 f'(x) = 0.0000000160 +/- 0.0000000339 exact = 0.0000000000