Next: Random Number Distribution References and Further Reading, Previous: Shuffling and Sampling, Up: Random Number Distributions
The following program demonstrates the use of a random number generator to produce variates from a distribution. It prints 10 samples from the Poisson distribution with a mean of 3.
#include <stdio.h> #include <gsl/gsl_rng.h> #include <gsl/gsl_randist.h> int main (void) { const gsl_rng_type * T; gsl_rng * r; int i, n = 10; double mu = 3.0; /* create a generator chosen by the environment variable GSL_RNG_TYPE */ gsl_rng_env_setup(); T = gsl_rng_default; r = gsl_rng_alloc (T); /* print n random variates chosen from the poisson distribution with mean parameter mu */ for (i = 0; i < n; i++) { unsigned int k = gsl_ran_poisson (r, mu); printf (" %u", k); } printf ("\n"); return 0; }
If the library and header files are installed under /usr/local (the default location) then the program can be compiled with these options,
$ gcc -Wall demo.c -lgsl -lgslcblas -lm
Here is the output of the program,
$ ./a.out2 5 5 2 1 0 3 4 1 1
The variates depend on the seed used by the generator. The seed for the
default generator type gsl_rng_default
can be changed with the
GSL_RNG_SEED
environment variable to produce a different stream
of variates,
$ GSL_RNG_SEED=123 ./a.outGSL_RNG_SEED=123 4 5 6 3 3 1 4 2 5 5
The following program generates a random walk in two dimensions.
#include <stdio.h> #include <gsl/gsl_rng.h> #include <gsl/gsl_randist.h> int main (void) { int i; double x = 0, y = 0, dx, dy; const gsl_rng_type * T; gsl_rng * r; gsl_rng_env_setup(); T = gsl_rng_default; r = gsl_rng_alloc (T); printf ("%g %g\n", x, y); for (i = 0; i < 10; i++) { gsl_ran_dir_2d (r, &dx, &dy); x += dx; y += dy; printf ("%g %g\n", x, y); } return 0; }
Here is the output from the program, three 10-step random walks from the origin,
The following program computes the upper and lower cumulative distribution functions for the standard normal distribution at x=2.
#include <stdio.h> #include <gsl/gsl_cdf.h> int main (void) { double P, Q; double x = 2.0; P = gsl_cdf_ugaussian_P (x); printf ("prob(x < %f) = %f\n", x, P); Q = gsl_cdf_ugaussian_Q (x); printf ("prob(x > %f) = %f\n", x, Q); x = gsl_cdf_ugaussian_Pinv (P); printf ("Pinv(%f) = %f\n", P, x); x = gsl_cdf_ugaussian_Qinv (Q); printf ("Qinv(%f) = %f\n", Q, x); return 0; }
Here is the output of the program,
prob(x < 2.000000) = 0.977250 prob(x > 2.000000) = 0.022750 Pinv(0.977250) = 2.000000 Qinv(0.022750) = 2.000000