
GNU sharutils, version 4.6.3
A set of shell archiver utilities

Edition 4.6.3, 20 November 2005

Jan Djärv
François Pinard

This manual documents version 4.6.3 of the GNU shar utilities.
Copyright c© 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005 Free
Software Foundation, Inc.

Permission is granted to copy, distribute and/or modify this document under
the terms of the GNU Free Documentation License, Version 1.1 or any later
version published by the Free Software Foundation; with no Invariant Sections,
with no Front-Cover Texts, and with no Back-Cover Texts. A copy of the license
is included in the section entitled “GNU Free Documentation License”.

1

GNU shar makes so-called shell archives out of many files, preparing them for transmis-
sion by electronic mail services, while unshar helps unpacking shell archives after reception.
Other tools help using shar with the electronic mail system, and even allow synchronization
of remote directory trees. This is release 4.6.3.

Chapter 1: Introduction to this toolset 2

1 Introduction to this toolset

GNU uuencode and uudecode have an history which roots are lost in ages, and we will not
even try to trace it. The current versions were brought into GNU by Ian Lance Taylor, and
later modernized by Ulrich Drepper. GNU shar surely has a long history, too. All along
this long road, numerous users contributed various improvements. The file ‘THANKS’ in the
distribution, as far as we know, contain the names of all contributors we could identify, and
for which email addresses are seemingly valid.

Please help us getting the history straight, for the following information is somewhat ap-
proximative. James Gosling wrote the public domain shar 1.x. William Davidsen rewrote
it as shar 2.x. Warren Tucker implemented modifications and called it shar 3.x. Richard
Gumpertz maintained it until 1990. François Pinard, from the public domain shar 3.49,
made GNU shar 4.x, in 1994. Some modules and other code sections were freely borrowed
from other GNU distributions, bringing this shar under the terms of the GNU General
Public License.

The few wrapper scripts and the remsync program have been contributed more recently
by François Pinard, just as an attempt for making this GNU sharutils toolset more useful.

Your feedback helps us to make a better and more portable product. Mail
suggestions and bug reports (including documentation errors) for these programs to
‘bug-gnu-utils@prep.ai.mit.edu’.

Chapter 2: The basic shar utilities 3

2 The basic shar utilities

GNU shar makes so-called shell archives out of many files, preparing them for transmission
by electronic mail services. A shell archive is a collection of files that can be unpacked
by /bin/sh. A wide range of features provide extensive flexibility in manufacturing shars
and in specifying shar smartness. For example, shar may compress files, uuencode binary
files, split long files and construct multi-part mailings, ensure correct unsharing order, and
provide simplistic checksums. See Section 2.1 [shar invocation], page 3.

GNU unshar scans a set of mail messages looking for the start of shell archives. It will
automatically strip off the mail headers and other introductory text. The archive bodies are
then unpacked by a copy of the shell. unshar may also process files containing concatenated
shell archives. See Section 2.2 [unshar invocation], page 8.

2.1 Invoking the shar program

The format of the shar command is one of:
shar [option] ... file ...
shar -S [option] ...

In the first form, the file list is given as command arguments. In the second form, the
file list is read from standard input. The resulting archive is sent to standard output unless
the -o option is given.

Options can be given in any order. Some options depend on each other: the -o option
is required if the -l or -L option is used. The -n option is required if the -a option is used.
Also see -V below.

Some options are special purpose:

--help Print a help summary on standard output, then immediately exits.

--version
Print the version number of the program on standard output, then immediately
exits.

-q
--quiet Verbose off at shar time. Messages are usually issued on standard error to let

the user follow the progress, while making the archives. This option inhibits
these messages.

2.1.1 Selecting files

-p
--intermix-type

Allow positional parameter options. The options -M, -B, -T, -z and -Z may be
embedded, and files to the right of the option will be processed in the specified
mode. Without the -p option, embedded options would be interpreted as file
names. See Section 2.1.4 [Stocking], page 5.

-S
--stdin-file-list

Read list of files to be packed from the standard input rather than from the
command line. Input must be one file name per line. This switch is especially

Chapter 2: The basic shar utilities 4

useful when the command line will not hold the list of files to be packed. For
example:

find . -type f -print | \
shar -S -o /somewhere/big.shar

If -p is specified on the command line, then the options -M, -B, -T, -z and -Z
may be included in the standard input (on a line separate from file names).
The maximum number of lines of standard input, file names and options, may
not exceed 1024.

2.1.2 Splitting output

-o prefix

--output-prefix=prefix
Save the archive to files ‘prefix.01’ through ‘prefix.nnn ’ instead of standard
output. This option must be used when the -l or the -L switches are used.
When prefix contains any ‘%’ character, prefix is then interpreted as a sprintf
format, which should be able to display a single decimal number. When prefix
does not contain such a ‘%’ character, the string ‘.%02d’ is internally appended.

-l size

--whole-size-limit=size
Limit the output file size to size times 1024 bytes but don’t split input files.
This allows the recipient of the shell archives to unpack them in any order.

-L size

--split-size-limit=size
Limit output file size to size times 1024 bytes and split files if necessary. The
archives created with this option must be unpacked in the correct order. If the
recipient of the shell archives wants to put all of them in a single folder, she
shall save them in the correct order for unshar, used with option -e, to unpack
them all at once. See Section 2.2 [unshar invocation], page 8.
For people used to saving all the shell archives into a single mail folder, care
must be taken to save them in the appropriate order. For those having the ap-
propriate tools (like Masanobu Umeda’s rmailsort package for GNU Emacs),
shell archives can be saved in any order, then sorted by increasing date (or send
time) before massive unpacking.

2.1.3 Controlling the shar headers

-n name

--archive-name=name
Name of archive to be included in the header of the shar files. Also see the -a
switch further down.

-s address

--submitter=address
The -s option allows for overriding the email address for the submitter, for
when the default is not appropriate. The automatically determined address
looks like ‘username@hostname ’.

Chapter 2: The basic shar utilities 5

-a
--net-headers

Allows automatic generation of headers:
Submitted-by: address

Archive-name: name/partnn

The name must be given with the -n switch. If name includes a ‘/’, then ‘/part’
isn’t used. Thus ‘-n xyzzy’ produces:

xyzzy/part01
xyzzy/part02

while ‘-n xyzzy/patch’ produces:
xyzzy/patch01
xyzzy/patch02

and ‘-n xyzzy/patch01.’ produces:
xyzzy/patch01.01
xyzzy/patch01.02

-c
--cut-mark

Start the shar with a cut line. A line saying ‘Cut here’ is placed at the start
of each output file.

-t
--translate

Translate messages in the script. If you have set the LANG environment variable,
messages printed by shar will be in the specified language. The produced script
will still be emitted using messages in the lingua franca of the computer world:
English. This option will cause the script messages to appear in the languages
specified by the LANG environment variable set when the script is produced.

2.1.4 Selecting how files are stocked

-T
--text-files

Treat all files as text, regardless of their contents.

-B
--uuencode

Treat all files as binary, use uuencode prior to packing. This increases the size
of the archive. The recipient must have uudecode in order to unpack.

Use of uuencode is not appreciated by many on the net, because
people like to readily see, by mere inspection of a shell archive,
what it is about.

-M
--mixed-uuencode

Mixed mode. Automatically determine if the files are text or binary and archive
correctly. Files found to be binary are uuencoded prior to packing. This option
is selected by default.

Chapter 2: The basic shar utilities 6

For a file is considered to be a text file, instead of a binary file, all the following
should be true simultaneously:
1. The file does not contain any ASCII control character besides 〈BS〉

(backspace), 〈HT〉 (horizontal tab), 〈LF〉 (new line) or 〈FF〉 (form feed).
2. The file does not contains a 〈DEL〉 (delete).
3. The file contains no character with its eighth-bit set.
4. The file, unless totally empty, terminates with a 〈LF〉 (newline).
5. No line in the file contains more than 200 characters. For counting purpose,

lines are separated by a 〈LF〉 (newline).

-z
--gzip Use gzip and uuencode on all files prior to packing. The recipient must have

uudecode and gzip (used with -d) in order to unpack.
Usage of -z in net shars will cause you to be flamed off the earth.

-g level

--level-for-gzip=level
When doing compression, use -level as a parameter to gzip. The -g option
turns on the -z option by default. The default value is 9, that is, maximum
compression.

-j
--bzip2 Use bzip2 and uuencode on all files prior to packing. The recipient must have

uudecode and bzip2 (used with -d) in order to unpack.
Usage of -j in net shars will cause you to be flamed off to hell.

-Z
--compress

Use compress and uuencode on all files prior to packing. The recipient must
have uudecode and compress (used with -d) in order to unpack. Option -C is
a synonymous for -Z, but is deprecated.
Usage of -Z in net shars will cause you to be flamed off the earth.

-b bits

--bits-per-code=bits
When doing compression, use -bx as a parameter to compress. The -b option
turns on the -Z option by default. The default value is 12, foreseeing the
memory limitations of some compress programs on smallish systems, at unshar
time.

2.1.5 Protecting against transmission errors

Transmission of shell archives is not always free of errors. So one should make consistency
checks on the receiving site. A very simple (and unreliable) method is running the UNIX
wc tool on the output file. This can report the number of characters in the file.

As one can guess this does not catch all errors. Especially changing of a character value
does not change the computed check sum. To achieve this goal better method were invented
and standardized. One very strong is MD5 (MD = message digests). This is standardized
in RFC 1321. The produced shell scripts do not force the md5sum program to be installed

Chapter 2: The basic shar utilities 7

on the system. This is necessary because it is not yet part of every UNIX. The program is
however not necessary for producing the shell archive.

-w
--no-character-count

Do not check with ‘wc -c’ after unpack. The default is to check.

-D
--no-md5-digest

Do not check with ‘md5sum’ after unpack. The default is to check.

-F
--force-prefix

Prepend the prefix character to every line even if not required. This option may
slightly increase the size of the archive, especially if -B or -Z is used. Normally,
the prefix character is ‘X’. If the parameter to the -d option starts with ‘X’,
then the prefix character becomes ‘Y’.

-d string

--here-delimiter=string
Use string to delimit the files in the shar instead of ‘SHAR_EOF’. This is for
those who want to personalize their shar files.

2.1.6 Producing different kinds of shars

-V
--vanilla-operation

This option produces vanilla shars which rely only upon the existence of echo,
test and sed in the unpacking environment.

The -V disables options offensive to the network cop (or brown shirt). It also
changes the default from mixed mode -M to text mode -T. Warnings are pro-
duced if option -B, -z, -j, -Z, -p or -M is specified (any of which does or might
require uudecode, gzip, bzip2 or compress in the unpacking environment).

-P
--no-piping

In the shar file, use a temporary file to hold the file to uudecode, instead of
using pipes. This option is mandatory when you know the unpacking uudecode
is unwilling to merely read its standard input. Richard Marks wrote what is
certainly the most (in)famous of these, for MSDOS :-).

(Here is a side note from the maintainer. Why isnt’t this option the default? In
the past history of shar, it was decided that piping was better, surely because
it is less demanding on disk space, and people seem to be happy with this.
Besides, I think that the uudecode from Richard Marks, on MSDOS, is wrong
in refusing to handle stdin. So far that I remember, he has the strong opinion
that a program without any parameters should give its --help output. Besides
that, should I say, his uuencode and uudecode programs are full-featured, one
of the most complete set I ever saw. But Richard will not release his sources,
he wants to stay in control.)

Chapter 2: The basic shar utilities 8

-x
--no-check-existing

Overwrite existing files without checking. If neither -x nor -X is specified, when
unpacking itself, the shell archive will check for and not overwrite existing files
(unless -c is passed as a parameter to the script when unpacking).

-X
--query-user

Interactively overwrite existing files.
Use of -X produces shars which will cause problems with some unshar-style
procedures, particularily when used together with vanilla mode (-V). Use this
feature mainly for archives to be passed among agreeable parties. Certainly, -X
is not for shell archives which are to be submitted to Usenet or other public
networks.
The problem is that unshar programs or procedures often feed ‘/bin/sh’ from
its standard input, thus putting ‘/bin/sh’ and the shell archive script in com-
petition for input lines. As an attempt to alleviate this problem, shar will try
to detect if ‘/dev/tty’ exists at the receiving site and will use it to read user
replies. But this does not work in all cases, it may happen that the receiving
user will have to avoid using unshar programs or procedures, and call /bin/sh
directly. In vanilla mode, using ‘/dev/tty’ is not even attempted.

-m
--no-timestamp

Avoid generating touch commands to restore the file modification dates when
unpacking files from the archive.
When the timestamp relationship is not preserved, some files like ‘configure’
or ‘*.info’ may be uselessly remade after unpacking. This is why, when this
option is not used, a special effort is made to restore timestamps,

-Q
--quiet-unshar

Verbose off at unshar time. Disables the inclusion of comments to be output
when the archive is unpacked.

-f
--basename

Use only the last file name component of each input file name, ignoring any
prefix directories. This is sometimes useful when building a shar from several
directories, or another directory. If a directory name is passed to shar, the
substructure of that directory will be restored whether -f is specified or not.

2.2 Invoking the unshar program

The format of the unshar command is:
unshar [option] ... [file ...]

Each file is processed in turn, as a shell archive or a collection of shell archives. If no
files are given, then standard input is processed instead.

Options:

Chapter 2: The basic shar utilities 9

--version
Print the version number of the program on standard output, then immediately
exits.

--help Print an help summary on standard output, then immediately exits.

-d directory

--directory=directory
Change directory to directory before unpacking any files.

-c
--overwrite
-f
--force Passed as an option to the shar file. Many shell archive scripts (including those

produced by shar 3.40 and newer) accepts a -c argument to indicate that
existing files should be overwritten.
The option -f is provided for a more unique interface. Many programs (such
as cp and mv) use this option to trigger the very same action.

-e
--exit-0 This option exists mainly for people who collect many shell archives into a single

mail folder. With this option, unshar isolates each different shell archive from
the others which have been put in the same file, unpacking each in turn, from
the beginning of the file towards its end. Its proper operation relies on the fact
that many shar files are terminated by a ‘exit 0’ at the beginning of a line.
Option -e is internally equivalent to -E "exit 0".

-E string

--split-at=string
This option works like -e, but it allows you to specify the string that separates
archives if ‘exit 0’ isn’t appropriate.
For example, noticing that most ‘.signatures’ have a ‘--’ on a line right before
them, one can sometimes use ‘--split-at=--’ for splitting shell archives which
lack the ‘exit 0’ line at end. The signature will then be skipped altogether with
the headers of the following message.

2.3 Miscellaneous considerations

Here is a place-holder for many considerations which do not fit elsewhere, while not worth
a section for themselves.

Be careful that the output file(s) are not included in the inputs or shar may loop until
the disk fills up. Be particularly careful when a directory is passed to shar that the output
files are not in that directory (or a subdirectory of that directory).

When a directory is passed to shar, it may be scanned more than once, to conserve
memory. Therefore, one should be careful to not change the directory contents while shar
is running.

No attempt is made to restore the protection and modification dates for directories,
even if this is done by default for files. Thus, if a directory is given to shar, the protection

Chapter 2: The basic shar utilities 10

and modification dates of corresponding unpacked directory may not match those of the
original.

Use of the -M or -B options will slow down the archive process. Use of the -z or -Z
options may slow the archive process considerably.

Let us conclude by a showing a few examples of shar usage:
shar *.c > cprog.shar
shar -Q *.[ch] > cprog.shar
shar -B -l28 -oarc.sh. *.arc
shar -f /lcl/src/u*.c > u.sh

The first shows how to make a shell archive out of all C program sources. The second
produces a shell archive with all ‘.c’ and ‘.h’ files, which unpacks silently. The third gives
a shell archive of all uuencoded ‘.arc’ files, into files ‘arc.sh.01’ through to ‘arc.sh.nnn ’.
The last example gives a shell archive which will use only the file names at unpack time.

Chapter 3: Simple wrappers around shar 11

3 Simple wrappers around shar

3.1 The mailshar command and arguments

3.2 The mail-files command and arguments

3.3 The find-mailer command and arguments

Chapter 4: Remote synchronisation of directories 12

4 Remote synchronisation of directories

For using the remsync facility, besides sharutils of course, you also need perl, GNU
tar, GNU findutils and gzip, all installed. You also need a sum program which is BSD-
compatible, for example the one from GNU textutils.

The remsync program tries to maintain up-to-date copies of whole hierarchy of files over
many loosely connected sites, provided there is at least some slow electronic mail between
them. It prepares and sends out specially packaged files called synchronization packages,
and is able to processes them after reception.

There is no master site, each site has an equal opportunity to modify files, and modified
files are propagated. Among many other commands, the broadcast command prepares
and sends a synchronization package from the current site to all others, while the process
command is used to apply synchronization packages locally after reception from remote sites.
remsync will never send a file to another site without being asked to with the broadcast
command, and besides the project synchronization state files (always named ‘.remsync’),
it will never modify a file locally without being asked to with the process command.

The unit of transmission is a file, whatever its size may be. Nothing less than whole files
are being transmitted. People deciding to cooperate in keeping a synchronized set of files
must have trust each other, as each participant has the power of modifying the contents of
files at other sites. When remsync is used by a single individual travelling between many
sites, as it is often the case, this confidence problem should be easier to resolve :-).

The process command will modify a file without asking confirmation, as long as there
is no reason to believe that the file has been modified at more than one place. When
some confusion arises from the fact many people independently modified a single file, the
receiving user of conflicting files will have the duty of resolving them into a merged version.
So, the merging has to be done at the site where the discrepancy is observed, from where
it is propagated again to others participants. There is no locking mechanism, so people
should use other means, like electronic mail, for telling each other what they do, and which
part of a project they are working on.

4.1 Quick start at using remsync

If you are in a real hurry, you can follow the recipe given here, and postpone studying this
manual further. However, we will consider only a simple case. In any case, it is good to
read the full example, as it gives a good picture of the overall usage of remsync.

For any sizeable project, it might not be convenient to start with one site having it all
and the other site having nothing, because this would cause the first synchronization to be
huge. It is more practical to move over a copy of the project by other means, might it be
diskettes, tapes, or mailshar. So let’s presume both sites have a copy of the project, not
necessarily identical, but close.

For the following example, we presume that under the same domain ‘champignac.land’,
there are two machines named ‘spirou’ and ‘fantasio’. Further, the participating user
on ‘spirou@spirou.champignac.land’ has ‘spirou’ for a login name, and similarily, the
participating user on ‘fantasio.champignac.land’ has ‘fantasio’ for a login name.
On the ‘spirou’ machine, user ‘spirou’ keeps the project under his home, in directory
‘spirou-copy’, while on the ‘fantasio’ machine, user ‘fantasio’ keeps the project under

Chapter 4: Remote synchronisation of directories 13

his home, in directory ‘fantasio-copy’. Of course, user names might be the same, as well
as the directories containing the project. We use different names here just to make the
example clearer.

Here is a full transcript of the initialization session, normally executed only once, and
slightly edited to make it more suitable for this manual. The example is broken down in
little parts, allowing explanations and comments.

% cd ~/spirou-copy
% remsync
remsync (format *.*) - GNU sharutils *.*

>> mode init

init>> remote fantasio@fantasio.champignac.land ~/fantasio-copy
* Directory ‘~/spirou-copy is not ready for synchronization
Should I prepare it for its first time (y/n)? [y]
Please enter a short project description: Zorglub project
What is your full email address, here? [spirou@spirou.champignac.land]

These commands prepare the ‘~/spirou-copy’ hierarchy for synchronization. You should
be located at the top directory of the hierarchy at the time the command remsync is called.

The ‘mode init’ command instructs remsync that no files should be sent in the synchro-
nization package, only their checksum. The goal here is to inform the other site of what we
have, and what we don’t, somewhat disregarding the fact the other site still looks like it
has nothing yet.

The remote command is the key in establishing a synchronization link. It has two
parameters, the first being the email address of the partner at the other site (as seen from
here, if this matters), the second being the location of the directory where the package
should reside on the remote site (as seen from there).

Because there is no ‘.remsync’ file in the project’s top-level directory, remsync concludes
this is a first synchronization, and so, ask a few questions, often telling in square brackets
what answer would be implied by a mere 〈Return〉 or 〈Enter〉. If the default reply seems
inappropriate, just give the correct information.

init>> broadcast

Broadcasting to address ‘fantasio@fantasio.champignac.land’
Studying local files for their signature
Registering file ‘file1’
Registering file ‘file2’
Registering file ‘file3’

* There were new registrations, please check them
Should I resume the current command (y/n)? [y]
Mailing shar to fantasio@fantasio.champignac.land
Message queued

Command ‘broadcast’ done

init>> quit

Chapter 4: Remote synchronisation of directories 14

%

The broadcast command produces an inventory of the project’s files at this end, and
mail it to the other partners. But before doing so, because some new files were registered
into the synchronization, the user is given the opportunity of interrupting the command, if
it is felt that some registered file should really not be there.

The quit command exits remsync, but only once it created the ‘.remsync’ file on disk.
Then, on ‘fantasio.champignac.land’, user ‘fantasio’ will receive the synchroniza-

tion package, easily recognizable by the fact the string ‘.remsync.tar.gz’ appears in the
Subject header of the message. Let’s assume ‘fantasio’ saves the whole message as file
‘/tmp/synchro-message’. Then, ‘fantasio’ might use the following recipe:

% cd /tmp
% unshar synchro-message
uudecoding file .remsync.tar.gz
% remsync process
Exploding archive ‘/tmp/.remsync.tar.gz’

Package being received:
from address ‘spirou@spirou.champignac.land’
for project ‘Zorglub project’

Visiting directory ‘~/fantasio-copy’, remote was ‘~/spirou-copy’
Initializing file ‘.remsync’ from received information
Studying local files for their signature
Command ‘process’ done

In that ‘remsync process’ call, the process command is being given non-interactively,
so remsync avoids unneeded interactions and exits right away once the command is done.
But equivalently, remsync might be called without arguments, the process command given
interactively, and a quit command later required to get out of remsync.

When receiving a synchronization package, remsync should be executed in the directory
where the file ‘.remsync.tar.gz’ has been unpacked, which might be quite unrelated to
the project itself. Here, ‘fantasio’ executed remsync in ‘/tmp/’, while the project resides
in ‘~/fantasio-project’. The synchronization package itself contains enough information
for remsync to automatically visit the proper directory.

After this operation, ‘fantasio.champignac.land’ has a ‘.remsync’ file in
‘~/fantasio-copy’, and the remote synchronization initialization is completed. Either
‘spirou’ or ‘fantasio’ may then modify files on their respective machine. If ‘spirou’
modifies ‘file2’ in the project, ‘spirou’ may execute:

% cd ~/spirou-copy
% remsync broadcast
Reading configuration for project ‘Zorglub project’

Broadcasting to address ‘fantasio@fantasio.champignac.land’
Studying local files for their signature
Packaging file ‘file2’

shar: Saving file2 (gzipped)

Chapter 4: Remote synchronisation of directories 15

Mailing shar to fantasio@fantasio.champignac.land
Message queued
Command ‘broadcast’ done

In fact, any time a participant later feel like sending modified files to all partners, s/he
just have to change the directory to the top of the project hierarchy, then call ‘remsync
broadcast’. Any time a synchronization package is later received, at either end, the
receiving user should apply unshar to related electronic messages for reconstructing the
synchronization package ‘.remsync.tar.gz’, then call ‘remsync process’ in the directory
containing this package.

4.2 The remsync command and arguments

At the shell prompt, calling the command remsync without any parameters initiates an
interactive dialog, in which the user types commands and receives feedback from the pro-
gram.

The command remsync, given at the shell prompt, may have arguments, in which case
these arguments taken together form one remsync interactive command. However, ‘--help’
and ‘--version’ options are interpreted especially, with their usual effect in GNU. Once
this command has been executed, no more commands are taken from the user and remsync
terminates execution. This allows for using remsync in some kind of batch mode. It is
unwise to redirect remsync standard input, because user interactions might often be needed
in ways difficult to predict in advance.

The two most common usages of remsync are the commands:
remsync b
remsync p

The first example executes the broadcast command, which sends synchronization pack-
ages to all connected remote sites for the current local directory tree.

The second example executes the process command, which studies and complies with a
synchronisation package saved in the current directory (not necessarily into the synchronized
directory tree), under the usual file name ‘remsync.tar.gz’.

4.3 Automatic mechanisms in the remsync program

The following points apply to many of the remsync commands. We describe them here once
and for all.
• The file ‘.remsync’ describes the various properties for the current synchronization. It

is kept right in the top directory of a synchronized directory tree. Some commands
may be executed without any need for this file. The program waits as far as possible
before reading it.

• If the ‘.remsync’ file is not found when required, and only then, the user is interactively
asked to fill a questionnaire about it.

• If the ‘.remsync’ file has been logically modified after having been read, or if it just
has been created, the program will save it back on disk. But it will do so only before
reading another ‘.remsync’ file, or just before exit. A preexisting ‘.remsync’ will be
renamed to ‘.remsync.bak’ before it is rewritten, when this is done, any previous
‘.remsync.bak’ file is discarded.

Chapter 4: Remote synchronisation of directories 16

• Many commands refer to previously entered information by repeating this information.
For example, one can refer to a particular scan statement by entering the wildcard to
be scanned by this statement. An alternative method of specifying a statement consists
in using the decimal number which appears between square brackets in the result of a
list command.

• Whenever a site list must be given, it is a space separated list of remote sites. If the
list is preceeded by a bang (〈!〉), the list is complemented, that is, the sites that will be
operated upon are all those not appearing in the list. As a special case, if the site list
is completely empty, then all sites are selected.

4.4 Commands for remsync

Program commands to remsync may be given interactively by the user sitten at a terminal.
They can come from the arguments of the remsync call at the shell level. Internally, the
process command might obey many sub-commands found in a received synchronization
package.

Program commands are given one per line. Lines beginning with a sharp (〈#〉) and white
lines are ignored, they are meant to increase clarity or to introduce user comments. With
only a few exceptions, commands are introduced by a keyword and often contains other
keywords. In all cases, the keywords specific to remsync may be abbreviated to their first
letter. When there are many keywords in succession, the space separating them may be
omitted. So the following commands are all equivalent:

list remote
l remote
list r
l r
listremote
lr

while the following are not legal:
l rem
lisremote

Below, for clarity, keywords are written in full and separated by spaces. Commands
often accept parameters, which are then separated by spaces. All available commands are
given in the table. The first few commands do not pre-require the file ‘.remsync’. The last
three commands are almost never used interactively, but rather automatically triggered
while process’ing received synchronization packages.

?

Display a quick help summary of available commands.

! [shell-command]
If shell-command has been given, execute it right now as a shell command.
When not given, rather start an interactive shell. Exiting from the shell will
return to this program. The started shell is taken from the SHELL environment
variable if set, else sh is used.

quit

Leave the program normally and return to the shell.

Chapter 4: Remote synchronisation of directories 17

abort

Leave the program with a nonzero exit status and return to the shell. No
attempt is made to save a logically modified ‘.remsync’ file.

visit directory
Select another synchronized directory tree for any subsequent operation. direc-
tory is the top directory of the synchronized directory tree.

process [file]
list [type]

List all known statements about some information type. Allowable keywords
for type are local, remote, scan, ignore and files. The keyword files asks
for all empty statements (see later). If type is omitted, then list all known
statements for all types, except those given by files.

[create] type value
Create a new statement introducing a value for a given type. Allowable key-
words for type are remote, scan and ignore. The create keyword may be
omitted.
For create ignore, when the pattern is preceeded by a bang (〈!〉), the condition
is reversed. That is, only those files which do match the pattern will be kept
for synchronization.

delete type value
Delete an existing statement supporting some value for a given type. Allowable
keywords for type are remote, scan and ignore.

email remote value
Modify the electronic mail address associated with some remote site, giving it
a new value. The special local keyword for remote may be used to modify the
local electronic mail address.

home remote value
Modify the top directory of the synchronized directory tree associated with
some remote site, giving it a new value. The special local keyword for remote
may be used to modify the local top directory.

broadcast site list
Send by electronic mail an update package to all sites from site list, containing
for each site all and only those files which are known to be different between
the remote site and here.

version version
This command is not meant for interactive use. It establishes the remsync
version needed to process the incoming commands.

from site list
This command is not really meant for interactive use. The first site from the
site list is the remote site which originated the synchronization package. All
the others are all the sites, including here, which were meant to be synchronized
by the broadcast command that was issued at the originating remote site.

Chapter 4: Remote synchronisation of directories 18

sum file checksum
This command is not really meant for interactive use. It declares the checksum
value of a particular file at the originating remote site. Also, if at least one
sum command is received, then it is guaranteed that the originating remote site
sent one sum command for each and every file to be synchronized, so any found
local file which was not subject of any sum command does not exist remotely.

if file checksum packaged
This command is not really meant for interactive use. It directs the remsync
program to check if a local file has a given checksum. If the checksum agrees,
then the local file will be replaced by the packaged file, as found in the received
synchronization invoice.

4.5 How remsync works

How does remsync keep track of what is in sync, and what isn’t? See Section 4.7 [Xremsync],
page 19, for a the documentation on the ‘.remsync’ file format. I understand that a mere
description of the format does not replace an explanation, but in the meantime, you might
guess from the format how the program works.

All files are summarized by a checksum, computed by the sum program. There are a few
variants of sum computing checksums in incompatible ways, under the control of options.
remsync attempts to retrieve on each site a compatible way to do it, and complains if it
cannot.

remsync does not compare dates or sizes. Experience shown that the best version of a
file is not necessarily the one with the latest timestamp. The best version for a site is the
current version on this site, as decided by its maintainer there, and this is this version that
will be propagated.

Each site has an idea of the checksum of a file for all other sites. These checksums
are not necessarily identical, for sites do not necessarily propagate to all others, and the
propagation network maybe incomplete or asymmetrical in various ways.

Propagation is never done unattended. The user on a site has to call remsync broadcast
to issue synchronization packages for other sites. If this is never done, the local modifications
will never leave the site. The user also has to call remsync process to apply received
synchronization packages. Applying a package does not automatically broadcast it further
(maybe this could change?).

If a site A propagates some files to sites B and D, but not C, site B is informed that
site D also received these files, and site D is informed that site B also received these files,
so they will not propagate again the same files to one another. However, both site B and
D are susceptible to propagate further the same files to site C.

It may happen that a site refuses to update a file, or modifies a file after having been
received, or merges versions, or whatever. So, sites may have a wrong opinion of the file
contents on other sites. These differences level down after a few exchanges, and it is very
unlikely that a file would not be propagated when it should have.

This scheme works only when the various people handling the various files have confi-
dence in one each other. If site B modifies a file after having received it from site A, the
file will eventually be propagated back to site A. If the original file stayed undisturbed on

Chapter 4: Remote synchronisation of directories 19

site A, that is, if remsync proves that site B correctly knew the checksum of the original
file, then the file will be replaced on site A without any user confirmation. So, the user on
site A has to trust the changes made by the user on site B.

If the original file on site A had been modified after having been sent in a synchronization
package, than it is the responsibility of the user on site A to correctly merge the local
modifications with the modifications observed in the file as received from site B. This
responsibility is real, since the merged file will later be propagated to the other sites in an
authoritative way.

4.6 Related file formats

4.7 Format of the ‘.remsync’ file

The ‘.remsync’ file saves all the information a site needs for properly synchronizing a
directory tree with remote sites. Even if it is meant to be editable using any ASCII editor,
it has a very precise format and one should be very careful while modifying it directly, if
ever. The ‘.remsync’ file is better handled through the remsync program and commands.

The ‘.remsync’ file is made up of statements, one per line. Each line begins with
a statement keyword followed by a single 〈TAB〉, then by one or more parameters. The
keyword may be omitted, in this case, the keyword is said to be empty, and the line begins
immediately with the 〈TAB〉. After the 〈TAB〉, if there are two parameters or more, they
should all be separated with a single space. There should not be any space between the last
parameter and the end of line (unless there are explicit empty parameters).

The following table gives the possible keywords. Their order of presentation in the table
is also the order of appearance in the ‘.remsync’ file.

remsync This statement identifies the ‘.remsync’ format. The only parameter states the
file format version.

local This statement should appear exactly once, and has exactly two parameters.
The first parameter gives the electronic mail address the other sites should use
for sending synchronization packages here. The second parameter gives the
name of the local directory tree to synchronize, in absolute notation.

remote This statement may appear zero, one or more times. Each occurrence connects
the synchronized directory tree to another tree on a remote site. The first pa-
rameter gives one electronic mail address where to send remote synchronization
packages. The second parameter gives the name of the corresponding directory
tree for this remote electronic mail address, in absolute notation.

scan This statement may appear zero, one or more times. When it does not appear
at all, the whole local directory tree will always be scanned, searching for files
to synchronize. When the statement appears at least once, the whole local
directory tree will not be scanned, but only those files or directories appearing
in one of these statements. Each scan statement has exactly one parameter,
giving one file or directory to be studied. These are usually given relative to
top directory of the local synchronization directory tree. Shell wildcards are
acceptable.

Chapter 4: Remote synchronisation of directories 20

ignore This statement may appear zero, one or more times. Each occurrence has
one parameter giving a regular expression, according to Perl syntax for regular
expressions. These regexps are applied against each file resulting from the scan.
If any of the ignore expression matches one of resulting file, the file is discarded
and is not subject to remote synchronization.

After all the statements beginning by the previous keywords, the ‘.remsync’ file usually
contains many statements having the empty keyword. The empty keyword statement may
appear zero, one or more times. Each occurrence list one file being remotely synchronized.
The first parameter gives an explicit file name, usually given relative to the top directory
of the local synchronized directory tree. Shell wildcards are not acceptable.

Besides the file name parameter, there are supplementary parameters to each empty
keyword statement, each corresponding to one remote statement in the ‘.remsync’ file. The
second parameter corresponds to the first remote, the third parameter corresponds to the
second remote, etc. If there are more remote statements than supplementary parameters,
missing parameters are considered to be empty.

Each supplementary parameter usually gives the last known checksum value for this
particular file, as computed on its corresponding remote site. The parameter contains a
dash - while the remote checksum is unknown. The checksum value for the local copy of
the file is never kept anywhere in the ‘.remsync’ file. The special value ‘666’ indicates a
checksum from hell, used when the remote file is known to exist, but for which contradictory
information has been received from various sources.

4.8 Format of synchronisation packages

Each synchronisation package is transmitted as a file named ‘.remsync.tar.gz’, which
has the format of a tar archive, further compressed with the gzip program. This archive
always contains a file named ‘.remsync-work/orders’, and zero or more files named
‘.remsync-work/1’, ‘.remsync-work/2’, etc. It contains no other files. Each numbered
file is actually a full, non-modified file pertaining to the hierarchy of the project, as sent
from the remote site.

The ‘.remsync-work/orders’ file drives the processing of the received synchronization
package. This ASCII file format quite closely resembles the ‘.remsync’ format, which we
do not explain again here. Only the keywords and their associated parameters are different,
and there is no empty keyword. The following table gives the possible keywords, in the
order where they normally appear.

format
title
here
remote
ignore
scan All those keywords are used exactly the same way as within the ‘.remsync’

file, and their format is not explained again here. They state the file format,
project title, local and possibly many remote identifications and directories,
zero or more ignores, zero or more scans; all of these exactly as known to the
remote site who created the synchronization package. In particular, the here

Chapter 4: Remote synchronisation of directories 21

line states the originating site of the package rather than the receiving one; the
receiving site should still be described by one of the remote lines.

visit This statement appears exactly once, and has one numeric parameter. It spec-
ifies the zero-based index in the list of remote lines above. The index identifies
the receiving site, that is, the site to which this package was sent.

copy This statement appears exactly once, and has one or more numeric parameters.
Each specifies a zero-based index in the list of remote lines above. All indices
specify the set of all sites who where broadcasted simultaneously, at the time
this synchronization package was issued. The index specified by the visit
line should also be one of the indices of the copy lines. The order in which
the indices are given is important, as it also establishes the order in which file
signatures are listed on the check lines below.

check This statement may appear zero, one or more times. Each occurrence describes
one file known to the project at the originating site, and there is exactly one
occurrence for each known file in the project. Each check line has exactly n+2
parameters, where n is the number of parameters of the copy command. The
first parameter gives a file name, relative to the top directory. The second
parameter gives the file signature for this file, as computed at the originating
site. For each remote site presented in the copy command, and exactly in the
same order, each supplementary parameter gives the originator’s idea of the
signature for the said file at this remote site. A dash (-) replaces the signature
for a file known not to exist.

update This statement may appear zero, one or more times. Each occurrence describes
what to do with one of the ‘.remsync-work/n ’ files, distributed within the
synchronization package. In fact, there should be exactly as many update
lines that there are numbered files in the synchronization package. Usually,
each update line immediately follows the corresponding check line, and has
exactly three parameters. The first parameter gives a file name in the project,
relative to the top level directory of the hierarchy. The second parameter gives
a file signature which the said file should have at the receiving site, for it to be
replaced safely, with no questions asked (this is the originator’s idea of what the
file signature was, on the receiving site, prior to its replacement). A dash (-)
replaces this signature for a file known not to exist. The third parameter is the
number n, which indicates the file ‘.remsync-work/n ’ in the synchronization
package distribution which should replace the corresponding project file at the
receiving site.

4.9 Other means to synchronization

One correspondent thinks that perhaps the news distribution mechanism could be pressed
into service for this job. I could have started from C-news, say, instead of from scratch, and
have progressively bent C-news to behave like I wanted.

My feeling is that the route was shorter as I did it, from scratch, that it would have been
from C-news. Of course, I could have removed the heavy administrative details of C-news:
the history and expire, the daemons, the cron entries, etc., then added the interactive

Chapter 4: Remote synchronisation of directories 22

features and specialized behaviors, but all this clean up would certainly have took energies.
Right now, non counting the subsidiary scripts and shar/unshar sources, the heart of the
result is a single (1200 lines) script written in Perl, which I find fairly more smaller and
maintainable than a patched C-news distribution would have been.

4.10 Documentation for obsolete scripts

This is merely a place holder for previous documentation, waiting that I clean it up. You
have no interest in reading further down.

4.10.1 mailsync

Usage: mailsync [OPTION] ... [EMAIL_ADDRESS] [DIRECTORY]
or: mailsync [OPTION] ... SYNC_DIRECTORY

Option -i simply sends a ihave package, with no bulk files. Option -n inhibits any
destructive operation and mailing.

In the first form of the call, find a synchronisation directory in DIRECTORY
aimed towards some EMAIL ADDRESS, then proceed with this synchronisation
directory. EMAIL ADDRESS may be the name of a file containing a distribution list. If
EMAIL ADDRESS is not specified, all the synchronisation directories at the top level
in DIRECTORY are processed in turn. If DIRECTORY is not specified, the current
directory is used.

In the second form of the call, proceed only with the given synchronisation directory
SYNC DIRECTORY.

For proceeding with a synchronisation directory, whatever the form of the call was, this
script reads the ident files it contains to set the local user and directory and the remote
user and directory. Then, selected files under the local directory which are modified in
regard to the corresponding files in the remote directory are turned into a synchronisation
package which is mailed to the remote user.

The list of selected files or directories to synchronize from the local directory are given
in the list file in the synchronisation directory. If this list file is missing, all files under
the local directory are synchronized.

What I usually do is to cd at the top of the directory tree to be synchronized, then to type
mailsync without parameters. This will automatically prepare as many synchronisation
packages as there are mirror systems, then email multipart shars to each of them. Note
that the synchronisation package is not identical for each mirror system, because they do
not usually have the same state of synchronisation.

mailsync will refuse to work if anything needs to be hand cleaned from a previous
execution of mailsync or resync. Check for some remaining ‘_syncbulk’ or ‘_synctemp’
directory, or for a ‘_syncrm’ script.

TODO:
- interrogate the user if ‘ident’ file missing.
- automatically construct the local user address.
- create the synchronisation directory on the fly.
- avoid duplicating work as far as possible for multiple sends.
- have a quicker mode, depending on stamps, not on checksums.
- never send core, executables, backups, ‘.nsf*’, ‘*/_synctemp/*’, etc.

Chapter 4: Remote synchronisation of directories 23

4.10.2 resync

Usage: resync [OPTION]... TAR_FILE
or: resync [OPTION]... UNTARED_DIRECTORY

Given a tar file produced by mailsync at some remote end and already reconstructed
on this end using unshar, or a directory containing the already untared invoice, apply the
synchronization package locally.

Option -n inhibits destroying or creating files, but does everything else. It will in partic-
ular create a synchronization directory if necessary, produce the ‘_syncbulk’ directory and
the ‘_syncrm’ script.

The synchronization directory for the package is automatically retrieved or, if not found,
created and initialized. resync keeps telling you what it is doing.

There are a few cases when a resync should not complete without manual intervention.
The common case is that several sites update the very same files differently since they were
last resync’ed, and then mailsync to each other. The prerequisite checksum will then fail,
and the files are then kept into the ‘_syncbulk’ tree, which has a shape similar to the
directory tree in which the files where supposed to go. For GNU Emacs users, a very handy
package, called emerge, written by Dale Worley <drw@kutta.mit.edu>, helps reconciling
two files interactiveley. The ‘_syncbulk’ tree should be explicitely deleted after the hand
synchronisation.

Another case of human intervention is when files are deleted at the mailsync’ing site.
By choice, all deletions on the receiving side are accumulated in a ‘_syncrm’ script, which
is not executed automatically. Explicitely executed, ‘_syncrm’ will remove any file in the
receiving tree which does not exist anymore on the sender system. I often edit ‘_syncrm’
before executing it, to remove the unwanted deletions (beware the double negation :-). The
script removes itself.

All the temporary files, while resynchronizing, are held in ‘_synctemp’, which is deleted
afterwards; if something goes wrong, this directory should also be cleaned out by hand.
resync will refuse to work if anything remains to be hand cleaned.

TODO:
- interrogates the user if missing receiving directory in ‘ident’.
- allow ‘remote.sum’ to be empty or non-existent.

Appendix A: GNU Free Documentation License 24

Appendix A GNU Free Documentation License

Version 1.1, March 2000

Copyright (C) 2000 Free Software Foundation, Inc.
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA

Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.

0. PREAMBLE

The purpose of this License is to make a manual, textbook, or other written document
“free” in the sense of freedom: to assure everyone the effective freedom to copy and
redistribute it, with or without modifying it, either commercially or noncommercially.
Secondarily, this License preserves for the author and publisher a way to get credit for
their work, while not being considered responsible for modifications made by others.

This License is a kind of “copyleft”, which means that derivative works of the document
must themselves be free in the same sense. It complements the GNU General Public
License, which is a copyleft license designed for free software.

We have designed this License in order to use it for manuals for free software, because
free software needs free documentation: a free program should come with manuals
providing the same freedoms that the software does. But this License is not limited to
software manuals; it can be used for any textual work, regardless of subject matter or
whether it is published as a printed book. We recommend this License principally for
works whose purpose is instruction or reference.

1. APPLICABILITY AND DEFINITIONS

This License applies to any manual or other work that contains a notice placed by
the copyright holder saying it can be distributed under the terms of this License. The
“Document”, below, refers to any such manual or work. Any member of the public is
a licensee, and is addressed as “you”.

A “Modified Version” of the Document means any work containing the Document or
a portion of it, either copied verbatim, or with modifications and/or translated into
another language.

A “Secondary Section” is a named appendix or a front-matter section of the Document
that deals exclusively with the relationship of the publishers or authors of the Document
to the Document’s overall subject (or to related matters) and contains nothing that
could fall directly within that overall subject. (For example, if the Document is in part a
textbook of mathematics, a Secondary Section may not explain any mathematics.) The
relationship could be a matter of historical connection with the subject or with related
matters, or of legal, commercial, philosophical, ethical or political position regarding
them.

The “Invariant Sections” are certain Secondary Sections whose titles are designated, as
being those of Invariant Sections, in the notice that says that the Document is released
under this License.

Appendix A: GNU Free Documentation License 25

The “Cover Texts” are certain short passages of text that are listed, as Front-Cover
Texts or Back-Cover Texts, in the notice that says that the Document is released under
this License.

A “Transparent” copy of the Document means a machine-readable copy, represented
in a format whose specification is available to the general public, whose contents can
be viewed and edited directly and straightforwardly with generic text editors or (for
images composed of pixels) generic paint programs or (for drawings) some widely avail-
able drawing editor, and that is suitable for input to text formatters or for automatic
translation to a variety of formats suitable for input to text formatters. A copy made
in an otherwise Transparent file format whose markup has been designed to thwart or
discourage subsequent modification by readers is not Transparent. A copy that is not
“Transparent” is called “Opaque”.

Examples of suitable formats for Transparent copies include plain ASCII without
markup, Texinfo input format, LaTeX input format, SGML or XML using a publicly
available DTD, and standard-conforming simple HTML designed for human modifica-
tion. Opaque formats include PostScript, PDF, proprietary formats that can be read
and edited only by proprietary word processors, SGML or XML for which the DTD
and/or processing tools are not generally available, and the machine-generated HTML
produced by some word processors for output purposes only.

The “Title Page” means, for a printed book, the title page itself, plus such following
pages as are needed to hold, legibly, the material this License requires to appear in the
title page. For works in formats which do not have any title page as such, “Title Page”
means the text near the most prominent appearance of the work’s title, preceding the
beginning of the body of the text.

2. VERBATIM COPYING

You may copy and distribute the Document in any medium, either commercially or
noncommercially, provided that this License, the copyright notices, and the license
notice saying this License applies to the Document are reproduced in all copies, and
that you add no other conditions whatsoever to those of this License. You may not use
technical measures to obstruct or control the reading or further copying of the copies
you make or distribute. However, you may accept compensation in exchange for copies.
If you distribute a large enough number of copies you must also follow the conditions
in section 3.

You may also lend copies, under the same conditions stated above, and you may publicly
display copies.

3. COPYING IN QUANTITY

If you publish printed copies of the Document numbering more than 100, and the
Document’s license notice requires Cover Texts, you must enclose the copies in covers
that carry, clearly and legibly, all these Cover Texts: Front-Cover Texts on the front
cover, and Back-Cover Texts on the back cover. Both covers must also clearly and
legibly identify you as the publisher of these copies. The front cover must present the
full title with all words of the title equally prominent and visible. You may add other
material on the covers in addition. Copying with changes limited to the covers, as long

Appendix A: GNU Free Documentation License 26

as they preserve the title of the Document and satisfy these conditions, can be treated
as verbatim copying in other respects.
If the required texts for either cover are too voluminous to fit legibly, you should put
the first ones listed (as many as fit reasonably) on the actual cover, and continue the
rest onto adjacent pages.
If you publish or distribute Opaque copies of the Document numbering more than 100,
you must either include a machine-readable Transparent copy along with each Opaque
copy, or state in or with each Opaque copy a publicly-accessible computer-network
location containing a complete Transparent copy of the Document, free of added ma-
terial, which the general network-using public has access to download anonymously at
no charge using public-standard network protocols. If you use the latter option, you
must take reasonably prudent steps, when you begin distribution of Opaque copies
in quantity, to ensure that this Transparent copy will remain thus accessible at the
stated location until at least one year after the last time you distribute an Opaque
copy (directly or through your agents or retailers) of that edition to the public.
It is requested, but not required, that you contact the authors of the Document well
before redistributing any large number of copies, to give them a chance to provide you
with an updated version of the Document.

4. MODIFICATIONS
You may copy and distribute a Modified Version of the Document under the conditions
of sections 2 and 3 above, provided that you release the Modified Version under precisely
this License, with the Modified Version filling the role of the Document, thus licensing
distribution and modification of the Modified Version to whoever possesses a copy of
it. In addition, you must do these things in the Modified Version:
A. Use in the Title Page (and on the covers, if any) a title distinct from that of the
Document, and from those of previous versions (which should, if there were any, be
listed in the History section of the Document). You may use the same title as a previous
version if the original publisher of that version gives permission.
B. List on the Title Page, as authors, one or more persons or entities responsible for
authorship of the modifications in the Modified Version, together with at least five of
the principal authors of the Document (all of its principal authors, if it has less than
five).
C. State on the Title page the name of the publisher of the Modified Version, as the
publisher.
D. Preserve all the copyright notices of the Document.
E. Add an appropriate copyright notice for your modifications adjacent to the other
copyright notices.
F. Include, immediately after the copyright notices, a license notice giving the public
permission to use the Modified Version under the terms of this License, in the form
shown in the Addendum below.
G. Preserve in that license notice the full lists of Invariant Sections and required Cover
Texts given in the Document’s license notice.
H. Include an unaltered copy of this License.
I. Preserve the section entitled “History”, and its title, and add to it an item stating at
least the title, year, new authors, and publisher of the Modified Version as given on the

Appendix A: GNU Free Documentation License 27

Title Page. If there is no section entitled “History” in the Document, create one stating
the title, year, authors, and publisher of the Document as given on its Title Page, then
add an item describing the Modified Version as stated in the previous sentence.
J. Preserve the network location, if any, given in the Document for public access to
a Transparent copy of the Document, and likewise the network locations given in the
Document for previous versions it was based on. These may be placed in the “History”
section. You may omit a network location for a work that was published at least four
years before the Document itself, or if the original publisher of the version it refers to
gives permission.
K. In any section entitled “Acknowledgements” or “Dedications”, preserve the section’s
title, and preserve in the section all the substance and tone of each of the contributor
acknowledgements and/or dedications given therein.
L. Preserve all the Invariant Sections of the Document, unaltered in their text and in
their titles. Section numbers or the equivalent are not considered part of the section
titles.
M. Delete any section entitled “Endorsements”. Such a section may not be included in
the Modified Version.
N. Do not retitle any existing section as “Endorsements” or to conflict in title with any
Invariant Section.

If the Modified Version includes new front-matter sections or appendices that qualify
as Secondary Sections and contain no material copied from the Document, you may at
your option designate some or all of these sections as invariant. To do this, add their
titles to the list of Invariant Sections in the Modified Version’s license notice. These
titles must be distinct from any other section titles.
You may add a section entitled “Endorsements”, provided it contains nothing but
endorsements of your Modified Version by various parties–for example, statements of
peer review or that the text has been approved by an organization as the authoritative
definition of a standard.
You may add a passage of up to five words as a Front-Cover Text, and a passage of up
to 25 words as a Back-Cover Text, to the end of the list of Cover Texts in the Modified
Version. Only one passage of Front-Cover Text and one of Back-Cover Text may be
added by (or through arrangements made by) any one entity. If the Document already
includes a cover text for the same cover, previously added by you or by arrangement
made by the same entity you are acting on behalf of, you may not add another; but
you may replace the old one, on explicit permission from the previous publisher that
added the old one.
The author(s) and publisher(s) of the Document do not by this License give permission
to use their names for publicity for or to assert or imply endorsement of any Modified
Version.

5. COMBINING DOCUMENTS
You may combine the Document with other documents released under this License,
under the terms defined in section 4 above for modified versions, provided that you
include in the combination all of the Invariant Sections of all of the original documents,

Appendix A: GNU Free Documentation License 28

unmodified, and list them all as Invariant Sections of your combined work in its license
notice.

The combined work need only contain one copy of this License, and multiple identical
Invariant Sections may be replaced with a single copy. If there are multiple Invariant
Sections with the same name but different contents, make the title of each such section
unique by adding at the end of it, in parentheses, the name of the original author or
publisher of that section if known, or else a unique number. Make the same adjustment
to the section titles in the list of Invariant Sections in the license notice of the combined
work.

In the combination, you must combine any sections entitled “History” in the various
original documents, forming one section entitled “History”; likewise combine any sec-
tions entitled “Acknowledgements”, and any sections entitled “Dedications”. You must
delete all sections entitled “Endorsements.”

6. COLLECTIONS OF DOCUMENTS

You may make a collection consisting of the Document and other documents released
under this License, and replace the individual copies of this License in the various
documents with a single copy that is included in the collection, provided that you
follow the rules of this License for verbatim copying of each of the documents in all
other respects.

You may extract a single document from such a collection, and distribute it individu-
ally under this License, provided you insert a copy of this License into the extracted
document, and follow this License in all other respects regarding verbatim copying of
that document.

7. AGGREGATION WITH INDEPENDENT WORKS

A compilation of the Document or its derivatives with other separate and independent
documents or works, in or on a volume of a storage or distribution medium, does not
as a whole count as a Modified Version of the Document, provided no compilation
copyright is claimed for the compilation. Such a compilation is called an “aggregate”,
and this License does not apply to the other self-contained works thus compiled with
the Document, on account of their being thus compiled, if they are not themselves
derivative works of the Document.

If the Cover Text requirement of section 3 is applicable to these copies of the Document,
then if the Document is less than one quarter of the entire aggregate, the Document’s
Cover Texts may be placed on covers that surround only the Document within the
aggregate. Otherwise they must appear on covers around the whole aggregate.

8. TRANSLATION

Translation is considered a kind of modification, so you may distribute translations
of the Document under the terms of section 4. Replacing Invariant Sections with
translations requires special permission from their copyright holders, but you may
include translations of some or all Invariant Sections in addition to the original versions
of these Invariant Sections. You may include a translation of this License provided that
you also include the original English version of this License. In case of a disagreement

Appendix A: GNU Free Documentation License 29

between the translation and the original English version of this License, the original
English version will prevail.

9. TERMINATION
You may not copy, modify, sublicense, or distribute the Document except as expressly
provided for under this License. Any other attempt to copy, modify, sublicense or
distribute the Document is void, and will automatically terminate your rights under
this License. However, parties who have received copies, or rights, from you under this
License will not have their licenses terminated so long as such parties remain in full
compliance.

10. FUTURE REVISIONS OF THIS LICENSE
The Free Software Foundation may publish new, revised versions of the GNU Free
Documentation License from time to time. Such new versions will be similar in spirit
to the present version, but may differ in detail to address new problems or concerns.
See http://www.gnu.org/copyleft/.
Each version of the License is given a distinguishing version number. If the Document
specifies that a particular numbered version of this License “or any later version”
applies to it, you have the option of following the terms and conditions either of that
specified version or of any later version that has been published (not as a draft) by
the Free Software Foundation. If the Document does not specify a version number of
this License, you may choose any version ever published (not as a draft) by the Free
Software Foundation.

ADDENDUM: How to use this License for your documents

To use this License in a document you have written, include a copy of the License in the
document and put the following copyright and license notices just after the title page:

Copyright (C) year your name.

Permission is granted to copy, distribute and/or modify this document

under the terms of the GNU Free Documentation License, Version 1.1

or any later version published by the Free Software Foundation;

with the Invariant Sections being list their titles, with the

Front-Cover Texts being list, and with the Back-Cover Texts being list.

A copy of the license is included in the section entitled ‘‘GNU

Free Documentation License’’.

If you have no Invariant Sections, write “with no Invariant Sections” instead of saying
which ones are invariant. If you have no Front-Cover Texts, write “no Front-Cover Texts”
instead of “Front-Cover Texts being list”; likewise for Back-Cover Texts.

If your document contains nontrivial examples of program code, we recommend releasing
these examples in parallel under your choice of free software license, such as the GNU
General Public License, to permit their use in free software.

i

Table of Contents

1 Introduction to this toolset 2

2 The basic shar utilities . 3
2.1 Invoking the shar program . 3

2.1.1 Selecting files . 3
2.1.2 Splitting output . 4
2.1.3 Controlling the shar headers . 4
2.1.4 Selecting how files are stocked . 5
2.1.5 Protecting against transmission errors . 6
2.1.6 Producing different kinds of shars . 7

2.2 Invoking the unshar program . 8
2.3 Miscellaneous considerations . 9

3 Simple wrappers around shar 11
3.1 The mailshar command and arguments . 11
3.2 The mail-files command and arguments 11
3.3 The find-mailer command and arguments 11

4 Remote synchronisation of directories 12
4.1 Quick start at using remsync . 12
4.2 The remsync command and arguments . 15
4.3 Automatic mechanisms in the remsync program 15
4.4 Commands for remsync . 16
4.5 How remsync works . 18
4.6 Related file formats. 19
4.7 Format of the ‘.remsync’ file . 19
4.8 Format of synchronisation packages . 20
4.9 Other means to synchronization . 21
4.10 Documentation for obsolete scripts . 22

4.10.1 mailsync . 22
4.10.2 resync . 23

Appendix A GNU Free Documentation License
. 24

ADDENDUM: How to use this License for your documents 29

	Introduction to this toolset
	The basic shar utilities
	Invoking the shar program
	Selecting files
	Splitting output
	Controlling the shar headers
	Selecting how files are stocked
	Protecting against transmission errors
	Producing different kinds of shars

	Invoking the unshar program
	Miscellaneous considerations

	Simple wrappers around shar
	The mailshar command and arguments
	The mail-files command and arguments
	The find-mailer command and arguments

	Remote synchronisation of directories
	Quick start at using remsync
	The remsync command and arguments
	Automatic mechanisms in the remsync program
	Commands for remsync
	How remsync works
	Related file formats
	Format of the .remsync file
	Format of synchronisation packages
	Other means to synchronization
	Documentation for obsolete scripts
	mailsync
	resync

	GNU Free Documentation License
	ADDENDUM: How to use this License for your documents

