Units Conversion

Edition 1.86 for units Version 1.84

Adrian Mariano

Copyright (© 1996, 1997, 1999, 2000, 2001, 2002, 2004 Free Software Foundation, Inc

The author gives unlimited permission to copy, translate and/or distribute this document,
with or without modifications, as long as this notice is preserved.

Units Conversion 1

1 Overview of units

The units program converts quantities expressed in various scales to their equivalents
in other scales. The units program can handle multiplicative scale changes as well as
nonlinear conversions such as Fahrenheit to Celsius.! Temperature conversions require a
special syntax. See [tempconvert], page 6.

The units are defined in an external data file. You can use the extensive data file that
comes with this program, or you can provide your own data file to suit your needs.

You can use the program interactively with prompts, or you can use it from the command
line.

2 Interacting with units

To invoke units for interactive use, type units at your shell prompt. The program will
print something like this:

2131 units, 53 prefixes, 24 nonlinear units

You have:

At the ‘You have:’ prompt, type the quantity and units that you are converting from. For
example, if you want to convert ten meters to feet, type 10 meters. Next, units will print
‘You want:’. You should type the type of units you want to convert to. To convert to feet,
you would type feet. Note that if the readline library was compiled in then the tab key
can be used to complete unit names. See Chapter 11 [Readline support|, page 14, for more
information about readline.

The answer will be displayed in two ways. The first line of output, which is marked with
a ‘*’ to indicate multiplication, gives the result of the conversion you have asked for. The
second line of output, which is marked with a ‘/’ to indicate division, gives the inverse of
the conversion factor. If you convert 10 meters to feet, units will print

* 32.808399
/ 0.03048

which tells you that 10 meters equals about 32.8 feet. The second number gives the con-
version in the opposite direction. In this case, it tells you that 1 foot is equal to about 0.03
dekameters since the dekameter is 10 meters. It also tells you that 1/32.8 is about .03.

The units program prints the inverse because sometimes it is a more convenient number.
In the example above, for example, the inverse value is an exact conversion: a foot is exactly
.03048 dekameters. But the number given the other direction is inexact.

If you try to convert grains to pounds, you will see the following;:

You have: grains

You want: pounds
* 0.00014285714
/ 7000

! But Fahrenheit to Celsius is linear, you insist. Not so. A transformation T is linear if T'(x + y) =
T(x) + T(y) and this fails for T'(z) = az + b. This transformation is affine, but not linear.

Units Conversion 2

From the second line of the output you can immediately see that a grain is equal to a seven
thousandth of a pound. This is not so obvious from the first line of the output. If you find
the output format confusing, try using the ‘--verbose’ option:

You have: grain

You want: aeginamina
grain = 0.00010416667 aeginamina
grain = (1 / 9600) aeginamina

If you request a conversion between units which measure reciprocal dimensions, then
units will display the conversion results with an extra note indicating that reciprocal con-
version has been done:

You have: 6 ohms

You want: siemens
reciprocal conversion
* 0.16666667
/ 6

Reciprocal conversion can be suppressed by using the ‘--strict’ option. As usual, use
the ‘--verbose’ option to get more comprehensible output:

You have: tex
You want: typp
reciprocal conversion
1 / tex = 496.05465 typp
1/ tex = (1 / 0.0020159069) typp

You have: 20 mph
You want: sec/mile
reciprocal conversion
1 / 20 mph = 180 sec/mile
1/ 20 mph = (1 / 0.0055555556) sec/mile
If you enter incompatible unit types, the units program will print a message indicating
that the units are not conformable and it will display the reduced form for each unit:

You have: ergs/hour
You want: fathoms kg~2 / day
conformability error
2.7777778e-11 kg m"2 / sec”3
2.1166667e-05 kg™2 m / sec

If you only want to find the reduced form or definition of a unit, simply press return at
the ‘You want:’ prompt. Here is an example:

You have: jansky
You want:
Definition: fluxunit = 1le-26 W/m"2 Hz = 1le-26 kg / s72
The output from units indicates that the jansky is defined to be equal to a fluxunit which
in turn is defined to be a certain combination of watts, meters, and hertz. The fully reduced
(and in this case somewhat more cryptic) form appears on the far right.

Some named units are treated as dimensionless in some situations. These include the
radian and steradian. These units will be treated as equal to 1 in units conversions. Power

Units Conversion 3

is equal to torque times angular velocity. This conversion can only be performed if the
radian dimensionless.

You have: (14 ft 1bf) (12 radians/sec)
You want: watts

* 227.77742

/ 0.0043902509

Note that named dimensionaless units are not treated as dimensionless in other contexts.
They cannot be used as exponents so for example, ‘meter"radian’ is not allowed.

If you want a list of options you can type 7 at the ‘You want:’ prompt. The program
will display a list of named units which are conformable with the unit that you entered at
the ‘You have:’ prompt above. Note that conformable unit combinations will not appear
on this list.

Typing help at either prompt displays a short help message. You can also type help
followed by a unit name. This will invoke a pager on the units data base at the point where
that unit is defined. You can read the definition and comments that may give more details
or historical information about the unit.

3 Using units non-interactively

The units program can perform units conversions non-interactively from the command
line. To do this, type the command, type the original units expression, and type the new
units you want. You will probably need to protect the units expressions from interpretation
by the shell using single quote characters.

If you type
units ’2 liters’ ’quarts’
then units will print

* 2.1133764
/ 0.47317647

and then exit. The output tells you that 2 liters is about 2.1 quarts, or alternatively that
a quart is about 0.47 times 2 liters.

If the conversion is successful, then units will return success (0) to the calling environ-
ment. If units is given non-conformable units to convert, it will print a message giving the
reduced form of each unit and it will return failure (nonzero) to the calling environment.

When units is invoked with only one argument, it will print out the definition of the
specified unit. It will return failure if the unit is not defined and success if the unit is
defined.

Units Conversion 4

4 Unit expressions

In order to enter more complicated units or fractions, you will need to use operations such
as powers, products and division. Powers of units can be specified using the ‘~’ character as
shown in the following example, or by simple concatenation: ‘cm3’ is equivalent to ‘cm”3’.
If the exponent is more than one digit, the ‘*’ is required. An exponent like ‘27372’ is
evaluated right to left. The ‘~’ operator has the second highest precedence.

You have: cm™3

You want: gallons
* 0.00026417205
/ 3785.4118

You have: arabicfoot * arabictradepound * force
You want: ft 1bf

* 0.7296

/ 1.370614

Multiplication of units can be specified by using spaces, or an asterisk (‘*’). If units
is invoked with the ‘--product’ option then the hyphen (‘-’) also acts as a multiplication
operator. Division of units is indicated by the slash (‘/’) or by ‘per’.

You have: furlongs per fortnight
You want: m/s

* 0.00016630986

/ 6012.8727

Multiplication has a higher precedence than division and is evaluated left to right, so
‘m/s * s/day’ is equivalent to ‘m / s s day’ and has dimensions of length per time cubed.
Similarly, ‘1/2 meter’ refers to a unit of reciprocal length equivalent to .5/meter, which
is probably not what you would intend if you entered that expression. You can indicate
division of numbers with the vertical dash (‘1”). This operator has the highest precedence
so the square root of two thirds could be written ‘213712,

You have: 1|2 inch
You want: cm

* 1.27

/ 0.78740157

Parentheses can be used for grouping as desired.

You have: (1/2) kg / (kg/meter)
You want: league

* 0.00010356166

/ 9656.0833

Prefixes are defined separately from base units. In order to get centimeters, the units
database defines ‘centi-’ and ‘c-’ as prefixes. Prefixes can appear alone with no unit
following them. An exponent applies only to the immediately preceding unit and its prefix
so that ‘cm”3’ or ‘centimeter~3’ refer to cubic centimeters but ‘centi*meter~3’ refers to
hundredths of cubic meters. Only one prefix is permitted per unit, so ‘micromicrofarad’
will fail, but ‘micro*microfarad’ will work, as will ‘micro microfarad’..

Units Conversion 5

For units, numbers are just another kind of unit. They can appear as many times as
you like and in any order in a unit expression. For example, to find the volume of a box
which is 2 ft by 3 ft by 12 ft in steres, you could do the following:

You have: 2 ft 3 ft 12 ft
You want: stere

* 2.038813

/ 0.49048148

You have: $ 5 / yard
You want: cents / inch
* 13.888889
/ 0.072

And the second example shows how the dollar sign in the units conversion can precede the
five. Be careful: units will interpret ‘$5’ with no space as equivalent to dollars™5.

Outside of the SI system, it is often desirable to add values of different units together.
You may also wish to use units as a calculator that keeps track of units. Sums of con-
formable units are written with the ‘+’ character.

You have: 2 hours + 23 minutes + 32 seconds
You want: seconds

* 8612

/ 0.00011611705

You have: 12 ft + 3 in
You want: cm

* 373.38

/ 0.0026782366

You have: 2 btu + 450 ft 1bf
You want: btu

* 2.5782804

/ 0.38785542

The expressions which are added together must reduce to identical expressions in primitive
units, or an error message will be displayed:

You have: 12 printerspoint + 4 heredium

Illegal sum of non-conformable units

Historically ‘=’ has been used for products of units, which complicates its iterpretation in
units. Because units provides several other ways to obtain unit products, and because
‘-’ is a subtraction operator in general algebraic expressions, units treats the binary ‘-’
as a subtraction operator by default. This behavior can be altered using the ‘~-product’
option which causes units to treat the binary ‘-’ operator as a product operator. Note
that when ‘-’ is a multiplication operator it has the same precedence as ‘*’, but when ‘-’ is

a subtraction operator it has the lower precedence as the addition operator.

When ‘-’ is used as a unary operator it negates its operand. Regardless of the units
options, if ‘-’ appears after ‘(" or after ‘+’ then it will act as a negation operator. So you

Units Conversion 6

can always compute 20 degrees minus 12 minutes by entering ‘20 degrees + -12 arcmin’.
You must use this construction when you define new units because you cannot know what
options will be in force when your definition is processed.

The ‘+” character sometimes appears in exponents like ‘3.43e+8’. This leads to an
ambiguity in an expression like ‘3e+2 yC’. The unit ‘e’ is a small unit of charge, so this can
be regarded as equivalent to ‘(3e+2) yC’ or ‘(3 e)+(2 yC)’. This ambiguity is resolved by
always interpreting ‘+” as part of an exponent if possible.

Several built in functions are provided: ‘sin’, ‘cos’, ‘tan’, ‘ln’, ‘log’, ‘log2’, ‘exp’
b b b b bl b bl

‘acos’, ‘atan’ and ‘asin’. The ‘sin’, ‘cos’, and ‘tan’ functions require either a dimensionless
argument or an argument with dimensions of angle.

You have: sin(30 degrees)
You want:
Definition: 0.5

You have: sin(pi/2)
You want:
Definition: 1

You have: sin(3 kg)

Unit not dimensionless

The other functions on the list require dimensionless arguments. The inverse trigonometric
functions return arguments with dimensions of angle.

If you wish to take roots of units, you may use the ‘sqrt’ or ‘cuberoot’ functions.
These functions require that the argument have the appropriate root. Higher roots can be
obtained by using fractional exponents:

You have: sqrt(acre)
You want: feet

* 208.71074

/ 0.0047913202

You have: (400 W/m~2 / stefanboltzmann) (1/4)
You have:
Definition: 289.80882 K

You have: cuberoot(hectare)

~

Unit not a root

Nonlinear units are represented using functional notation. They make possible nonlinear
unit conversions such temperature. This is different from the linear units that convert
temperature differences. Note the difference below. The absolute temperature conversions
are handled by units starting with ‘temp’, and you must use functional notation. The
temperature differences are done using units starting with ‘deg’ and they do not require
functional notation.

Units Conversion 7

You have: tempF(45)
You want: tempC
7.2222222

You have: 45 degF
You want: degC

* 25

/ 0.04

Think of ‘tempF (x)’ not as a function but as a notation which indicates that ‘x’ should
have units of ‘tempF’ attached to it. See Chapter 8 [Nonlinear units|, page 11. The first
conversion shows that if it’s 45 degrees Fahrehneit outside it’s 7.2 degrees Celsius. The
second conversions indicates that a change of 45 degrees Fahrenheit corresponds to a change
of 25 degrees Celsius.

Some other examples of nonlinears units are ring size and wire gauge. There are nu-
merous different gauges and ring sizes. See the units database for more details. Note that
wire gauges with multiple zeroes are signified using negative numbers where two zeroes is
-1. Alternatively, you can use the synonyms ‘g00’; ‘g000’, and so on that are defined in the
units database.

You have: wiregauge(11)
You want: inches

* 0.090742002

/ 11.020255

You have: brwiregauge (g00)
You want: inches

* 0.348

/ 2.8735632

You have: 1 mm
You want: wiregauge
18.201919

5 Invoking units

You invoke units like this:
units [options] [from-unit [to-unit]]

If the from-unit and to-unit are omitted, then the program will use interactive prompts to
determine which conversions to perform. See Chapter 2 [Interactive use|, page 1. If both
from-unit and to-unit are given, units will print the result of that single conversion and
then exit. If only from-unit appears on the command line, units will display the definition
of that unit and exit. Units specified on the command line will need to be quoted to protect
them from shell interpretation and to group them into two arguments. See Chapter 3
[Command line use|, page 3.

The following options allow you to read in an alternative units file, check your units file,
or change the output format:

Units Conversion 8

e

‘——check’

Check that all units and prefixes defined in the units data file reduce to primitive
units. Print a list of all units that cannot be reduced. Also display some other
diagnostics about suspicious definitions in the units data file. Note that only
definitions active in the current locale are checked.

‘——check-verbose’

‘~o0 format’

Like the ‘-check’ option, this option prints a list of units that cannot be re-
duced. But to help find unit definitions that cause endless loops, it lists the
units as they are checked. If units hangs, then the last unit to be printed
has a bad definition. Note that only definitions active in the current locale are
checked.

‘-—output-format format’

Use the specified format for numeric output. Format is the same as that for
the printf function in the ANSI C standard. For example, if you want more
precision you might use ‘-o %.15g’.

‘~f filename’
‘——file filename’

‘~—product’

4_q7
‘-—quiet’
‘--silent’

g

‘——strict’

Instruct units to load the units file filename. If filename is the empty string
(‘= ’?7) then the default units file will be loaded. This enables you to load the
default file plus a personal units file. Up to 25 units files may be specified on
the command line. This option overrides the UNITSFILE environment variable.

Print out a summary of the options for units.

Causes ‘-’ to be interpreted as a subtraction operator. This is usually the
default behavior.

Causes ‘=’ to be interpreted as a multiplication operator when it has two
operands. It will as a negation operator when it has only one operand: ‘(-3)’.
Note that by default ‘-’ is treated as a subtraction operator.

Suppress prompting of the user for units and the display of statistics about the
number of units loaded.

Suppress conversion of units to their reciprocal units. For example, units will
normally convert hertz to seconds because these units are reciprocals of each
other. The strict option requires that units be strictly conformable to perform
a conversion, and will give an error if you attempt to convert hertz to seconds.

Units Conversion 9

c_t7

‘-—terse’ Give terse output when converting units. This option can be used when calling
units from another program so that the output is easy to parse.

—y’

‘~-verbose’
Give slightly more verbose output when converting units. When combined with
the ‘-=c’ option this gives the same effect as ‘~-check-verbose’.

c_V7

‘~-version’
Print program version number, tell whether the readline library has been in-
cluded, and give the location of the default units data file.

6 Unit definitions

The conversion information is read from a units data file which is called ‘units.dat’ and
is probably located in the ‘/usr/local/share’ directory. If you invoke units with the
‘~V’ option, it will print the location of this file. The default file includes definitions for all
familiar units, abbreviations and metric prefixes. It also includes many obscure or archaic
units.

Many constants of nature are defined, including these:

pi ratio of circumference to diameter
c speed of light

e charge on an electron

force acceleration of gravity

mole Avogadro’s number

water pressure per unit height of water
Hg pressure per unit height of mercury
au astronomical unit

k Boltzman’s constant

mu0 permeability of vacuum

epsilon0 permitivity of vacuum

G Gravitational constant

mach speed of sound

The database includes atomic masses for all of the elements and numerous other con-
stants. Also included are the densities of various ingredients used in baking so that ‘2 cups
flour_sifted’ can be converted to ‘grams’. This is not an exhaustive list. Consult the
units data file to see the complete list, or to see the definitions that are used.

The unit ‘pound’ is a unit of mass. To get force, multiply by the force conversion
unit ‘force’ or use the shorthand ‘1bf’. (Note that ‘g’ is already taken as the standard
abbreviation for the gram.) The unit ‘ounce’ is also a unit of mass. The fluid ounce is
‘fluidounce’ or ‘floz’. British capacity units that differ from their US counterparts, such
as the British Imperial gallon, are prefixed with ‘br’. Currency is prefixed with its country
name: ‘belgiumfranc’, ‘britainpound’.

The US Survey foot, yard, and mile can be obtained by using the ‘US’ prefix. These units
differ slightly from the international length units. They were in general use until 1959, and

Units Conversion 10

are still used for geographic surveys. The acre is officially defined in terms of the US Survey
foot. If you want an acre defined according to the international foot, use ‘intacre’. The
difference between these units is about 4 parts per million. The British also used a slightly
different length measure before 1959. These can be obtained with the prefix ‘UK’.

When searching for a unit, if the specified string does not appear exactly as a unit name,
then the units program will try to remove a trailing ‘s’ or a trailing ‘es’. If that fails, units
will check for a prefix. All of the standard metric prefixes are defined.

To find out what units and prefixes are available, read the standard units data file.

7 Defining new units

All of the units and prefixes that units can convert are defined in the units data file. If
you want to add your own units, you can supply your own file.

A unit is specified on a single line by giving its name and an equivalence. Comments
start with a ‘#’ character, which can appear anywhere in a line. The backslash character
(‘\’) acts as a continuation character if it appears as the last character on a line, making
it possible to spread definitions out over several lines if desired. A file can be included by
giving the command ‘!include’ followed by the file’s name. The file will be sought in the
same directory as the parent file unless a full path is given.

Unit names must not contain any of the operator characters ‘+’, ‘=’, ‘¥’ ¢/’ ¢|’, *~ or
the parentheses. They cannot begin with a digit or a decimal point (‘.”), nor can they end
with a digit (except for zero). Be careful to define new units in terms of old ones so that a
reduction leads to the primitive units, which are marked with ‘!’ characters. Dimensionless
units are indicated by using the string ‘!'dimensionless’ for the unit definition.

When adding new units, be sure to use the ‘-c’ option to check that the new units reduce
properly. If you create a loop in the units definitions, then units will hang when invoked
with the ‘-=c’ options. You will need to use the ‘--check-verbose’ option which prints out
each unit as it checks them. The program will still hang, but the last unit printed will be
the unit which caused the infinite loop.

If you define any units which contain ‘+’ characters, carefully check them because the
‘~¢’ option will not catch non-conformable sums. Be careful with the ‘-’ operator as well.
When used as a binary operator, the ‘=’ character can perform addition or multiplication
depending on the options used to invoke units. To ensure consistent behavior use ‘-’
only as a unary negation operator when writing units definitions. To multiply two units
leave a space or use the ‘*’ operator. To compute the difference of ‘foo’ and ‘bar’ write
‘foo+(-bar)’ or even ‘foo+-bar’.

Here is an example of a short units file that defines some basic units:

Units Conversion 11

m ! # The meter is a primitive unit

sec ! # The second is a primitive unit

rad !dimensionless # A dimensionless primitive unit
micro- 1le-6 # Define a prefix

minute 60 sec # A minute is 60 seconds

hour 60 min # An hour is 60 minutes

inch 0.0254 m # Inch defined in terms of meters

ft 12 inches # The foot defined in terms of inches

mile 5280 ft

+*

And the mile

A unit which ends with a ‘=’ character is a prefix. If a prefix definition contains any
‘/’ characters, be sure they are protected by parentheses. If you define ‘half- 1/2’ then
‘halfmeter’ would be equivalent to ‘1 / 2 meter’.

8 Defining nonlinear units

Some units conversions of interest are nonlinear; for example, temperature conversions be-
tween the Fahrenheit and Celsius scales cannot be done by simply multiplying by conversions
factors.

When you give a linear unit definition such as ‘inch 2.54 cm’ you are providing informa-
tion that units uses to convert values in inches into primitive units of meters. For nonlinear
units, you give a functional definition that provides the same information.

Nonlinear units are represented using a functional notation. It is best to regard this
notation not as a function call but as a way of adding units to a number, much the same
way that writing a linear unit name after a number adds units to that number. Internally,
nonlinear units are defined by a pair of functions which convert to and from linear units in
the data file, so that an eventual conversion to primitive units is possible.

Here is an example nonlinear unit definition:
tempF (x) [1;K] (x+(-32)) degF + stdtemp ; (tempF+(-stdtemp))/degF + 32

A nonlinear unit definition comprises a unit name, a dummy parameter name, two functions,
and two corresponding units. The functions tell units how to convert to and from the new
unit. In order to produce valid results, the arguments of these functions need to have the
correct dimensions. To facilitate error checking, you may specify the dimensions.

The definition begins with the unit name followed immediately (with no spaces) by a
‘(" character. In parentheses is the name of the parameter. Next is an optional specifica-
tion of the units required by the functions in this definition. In the example above, the
‘tempF’ function requires an input argument conformable with ‘1’. For normal nonlinear
units definitions the forward function will always take a dimensionless argument. The in-
verse function requires an input argument conformable with ‘K’. In general the inverse
function will need units that match the quantity measured by your nonlinear unit. The sole
purpose of the expression in brackets to enable units to perform error checking on function
arguments.

Next the function definitions appear. In the example above, the ‘tempF’ function is
defined by

Units Conversion 12

tempF (x) = (x+(-32)) degF + stdtemp

This gives a rule for converting ‘x’ in the units ‘tempF’ to linear units of absolute tempera-
ture, which makes it possible to convert from tempF to other units.

In order to make conversions to Fahrenheit possible, you must give a rule for the inverse
conversions. The inverse will be ‘x(tempF)’ and its definition appears after a ‘;’ character.
In our example, the inverse is

x(tempF) = (tempF+(-stdtemp))/degF + 32

This inverse definition takes an absolute temperature as its argument and converts it to the
Fahrenheit temperature. The inverse can be omitted by leaving out the ¢;’ character, but
then conversions to the unit will be impossible. If the inverse is omitted then the ‘--check’
option will display a warning. It is up to you to calculate and enter the correct inverse
function to obtain proper conversions. The ‘--check’ option tests the inverse at one point
and print an error if it is not valid there, but this is not a guarantee that your inverse is
correct.

If you wish to make synonyms for nonlinear units, you still need to define both the
forward and inverse functions. Inverse functions can be obtained using the ‘~’ operator. So
to create a synonym for ‘tempF’ you could write

fahrenheit(x) [1;K] tempF(x); ~tempF(fahrenheit)

You may occasionally wish to define a function that operates on units. This can be done
using a nonlinear unit definition. For example, the definition below provides conversion
between radius and the area of a circle. Note that this definition requires a length as input
and produces an area as output, as indicated by the specification in brackets.

circlearea(r) [m;m~2] pi r~2 ; sqrt(circlearea/pi)

Sometimes you may be interested in a piecewise linear unit such as many wire gauges.
Piecewise linear units can be defined by specifying conversions to linear units on a list of
points. Conversion at other points will be done by linear interpolation. A partial definition
of zinc gauge is

zincgauge[in] 1 0.002, 10 0.02, 15 0.04, 19 0.06, 23 0.1

In this example, ‘zincgauge’ is the name of the piecewise linear unit. The definition of such
a unit is indicated by the embedded ‘[’ character. After the bracket, you should indicate
the units to be attached to the numbers in the table. No spaces can appear before the ‘1’
character, so a definition like ‘foo[kg meters]’ is illegal; instead write ‘foo [kg*meters]’.
The definition of the unit consists of a list of pairs optionally separated by commas. This
list defines a function for converting from the piecewise linear unit to linear units. The first
item in each pair is the function argument; the second item is the value of the function at
that argument (in the units specified in brackets). In this example, we define ‘zincgauge’
at five points. For example, we set ‘zincgauge (1)’ equal to ‘0.002 in’. Definitions like
this may be more readable if written using continuation characters as

zincgauge[in] \

1 0.002 \
10 0.02 \
15 0.04 \
19 0.06 \

23 0.1

Units Conversion 13

With the preceeding definition, the following conversion can be performed:

You have: zincgauge(10)
You want: in
* 0.02
/ 50
You have: .01 inch
You want: zincgauge
5

If you define a piecewise linear unit that is not strictly monotonic, then the inverse will
not be well defined. If the inverse is requested for such a unit, units will return the smallest
inverse. The ‘--check’ option will print a warning if a non-monotonic piecewise linear unit
is encountered.

9 Localization

Some units have different values in different locations. The localization feature accomodates
this by allowing the units database to specify region dependent definitions. A locale region
in the units database begins with ‘!locale’ followed by the name of the locale. The leading
‘I’ must appear in the first column of the units database. The locale region is terminated
by ‘'endlocale’. The following example shows how to define a couple units in a locale.

llocale en_GB

ton brton
gallon brgallon
lendlocale

The current locale is specified by the LOCALE environment variable. Note that the ‘-c’
option only checks the definitions which are active for the current locale.

10 Environment variables

The units programs uses the following environment variables.

‘LOCALE’ Specifies the locale. The default is ‘en_US’. Sections of the units database are
specific to certain locales.

‘PAGER’ Specifies the pager to use for help and for displaying the conformable units.
The help function browses the units database and calls the pager using the
+nn syntax for specifying a line number. The default pager is more, but less,
emacs, or vi are possible alternatives.

‘UNITSFILE’
Specifies the units database file to use (instead of the default). This will be
overridden by the ‘-f’ option. Note that you can only specify a single units
database using this environment variable.

Units Conversion 14

11 Readline support

If the readline package has been compiled in, then when units is used interactively,
numerous command line editing features are available. To check if your version of units
includes the readline, invoke the program with the ‘--version’ option.

For complete information about readline, consult the documentation for the readline
package. Without any configuration, units will allow editing in the style of emacs. Of
particular use with units are the completion commands.

If you type a few characters and then hit ‘ESC’ followed by the ? key then units will
display a list of all the units which start with the characters typed. For example, if you
type metr and then request completion, you will see something like this:

You have: metr

metre metriccup metrichorsepower metrictenth
metretes metricfifth metricounce metricton
metriccarat metricgrain metricquart metricyarncount

You have: metr
If there is a unique way to complete a unitname, you can hit the tab key and units
will provide the rest of the unit name. If units beeps, it means that there is no unique
completion. Pressing the tab key a second time will print the list of all completions.

Units Conversion

15

Units Conversion

Index

--check (option for units).................... 8
--check-verbose (option for units) 8
--file (option for units) 8
--help (option for units)..................... 8
--minus (option for units).................... 8
--output-format (option for units) 8
--product (option for units).................. 8
--quiet (option for units).................... 8
--silent (option for units)................... 8
--strict (option for units)................... 8
--terse (option for units).................... 9
--verbose (option for units).................. 9
--version (option for units).................. 9
-c (option for units)................. 8
-f (option for units).............. 8
-h (option for units).............., 8
-m (option for units).............. 8
-o (option for units).............. 8
-p (option for units)................., 8
-q (option for units).......................... 8
-s (option for units).............. 8
-t (option for units).............., 9
-v (option for units).............. 9
-V (option for units).............. 9

A

addition of units................. 5

C

changing nonlinear unit definitions............ 11
changing units definitions 10
command line options......................... 7
command line unit conversion.................. 3

D

defining nonlinear units 11
defining units., 10
dimensionless units 3, 10
division of numbers L. 4
division of units oL 4

E

environment variables........................ 13

F

fractions 4
functions of units 12
functions, built in............................. 6

16
include files 10
incompatible units 2
interactive use.............., 1
invoking units 7
linear interpolation 12
LOCALE environment variable 13
localization., 13
multiplication of units......................... 4
non-conformable units......................... 2
non-interactive unit conversion................. 3
nonlinear unit conversions 11
nonlinear units, redefinition of 11
PAGER environment variable................. 13
piecewise linear units......................... 12
POWETS .« o vttt e e e e e e e e e e 4
products i 4
readline, use with units...................... 14
reciprocal conversion.......................... 2
TOO S . vttt 6
square roots.......... il 6
strict conversion 2
sums of units........... ... 5
temperature conversions. 6
unit definitions 9
unit expressions 4
unit name completion........................ 14
units functions 12
units, piecewise linear 12
units, redefinition of 10
UNITSFILE environment variable............. 13

vV

verbose output 2

Units Conversion

Table of Contents

1 Overviewofunits...........ooiii... 1
2 Interacting with units...................... 1
3 Using units non-interactively 3
4 Unit expressionsc.vveeeeeeunnnnn. 4
5 Invokingunits.............cciiiiiiiin.... 7
6 Unit definitions............................ 9
7 Defining new units........................ 10
8 Defining nonlinear units................... 11
9 Localization, 13
10 Environment variables 13
11 Readlinesupport 14

	Overview of units
	Interacting with units
	Using units non-interactively
	Unit expressions
	Invoking units
	Unit definitions
	Defining new units
	Defining nonlinear units
	Localization
	Environment variables
	Readline support
	Index

