Next: Beta Functions, Previous: Pochhammer Symbol, Up: Gamma and Beta Functions
These functions compute the unnormalized incomplete Gamma Function \Gamma(a,x) = \int_x^\infty dt t^{a-1} \exp(-t) for a real and x >= 0.
These routines compute the normalized incomplete Gamma Function Q(a,x) = 1/\Gamma(a) \int_x^\infty dt t^{a-1} \exp(-t) for a > 0, x >= 0.
These routines compute the complementary normalized incomplete Gamma Function P(a,x) = 1 - Q(a,x) = 1/\Gamma(a) \int_0^x dt t^{a-1} \exp(-t) for a > 0, x >= 0.
Note that Abramowitz & Stegun call P(a,x) the incomplete gamma function (section 6.5).