Next: The Negative Binomial Distribution, Previous: The Binomial Distribution, Up: Random Number Distributions
This function returns an array of K random variates from a multinomial distribution. The distribution function is,
P(n_1, n_2, ..., n_K) = (N!/(n_1! n_2! ... n_K!)) p_1^n_1 p_2^n_2 ... p_K^n_Kwhere (n_1, n_2, ..., n_K) are nonnegative integers with sum_{k=1}^K n_k = N, and (p_1, p_2, ..., p_K) is a probability distribution with \sum p_i = 1. If the array p[K] is not normalized then its entries will be treated as weights and normalized appropriately.
Random variates are generated using the conditional binomial method (see C.S. David, The computer generation of multinomial random variates, Comp. Stat. Data Anal. 16 (1993) 205–217 for details).